ISPAES: Evolutionary multi-objective optimization with constraint handling

被引:0
|
作者
Aguirre, AH [1 ]
Rionda, SB [1 ]
Lizarraga, G [1 ]
Coello, CC [1 ]
机构
[1] Mineral Valenciana, Dept Comp Sci, Ctr Res Math, Guanajuato 36240, Mexico
关键词
D O I
10.1109/ENC.2003.1232913
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this article we introduce Inverted and Shrinkable Pareto Archived Evolutionary Strategies, IS-PAES, an evolutionary algorithm for multiple objective optimization with constraint handling. IS-PAES inherits from PAES the use of an adaptable grid to control diversity, but here this grid can grow and shrink dinamically until the constraints are met. We also propose a novel approach to remove unfeasible individuals from the population while keeping high population diversity. Several examples of the literature are used to show the potential of ISPAES.
引用
收藏
页码:338 / 345
页数:8
相关论文
共 50 条
  • [31] Advances in Evolutionary Multi-objective Optimization
    Tan, Kay Chen
    SOFT COMPUTING APPLICATIONS, 2013, 195 : 7 - 8
  • [32] Foundations of Evolutionary Multi-Objective Optimization
    Friedrich, Toblas
    Neumann, Frank
    GECCO-2010 COMPANION PUBLICATION: PROCEEDINGS OF THE 12TH ANNUAL GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2010, : 2557 - 2575
  • [33] Guidance in evolutionary multi-objective optimization
    Branke, J
    Kaussler, T
    Schmeck, H
    ADVANCES IN ENGINEERING SOFTWARE, 2001, 32 (06) : 499 - 507
  • [34] Advances in Evolutionary Multi-objective Optimization
    Bechikh, Slim
    Coello Coello, Carlos Artemio
    SWARM AND EVOLUTIONARY COMPUTATION, 2018, 40 : 155 - 157
  • [35] A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism
    Yang, Yongkuan
    Liu, Jianchang
    Tan, Shubin
    APPLIED SOFT COMPUTING, 2020, 89
  • [36] Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms
    Biswas, Partha P.
    Suganthan, P. N.
    Mallipeddi, R.
    Amaratunga, Gehan A. J.
    SOFT COMPUTING, 2020, 24 (04) : 2999 - 3023
  • [37] Multi-objective optimal power flow solutions using a constraint handling technique of evolutionary algorithms
    Partha P. Biswas
    P. N. Suganthan
    R. Mallipeddi
    Gehan A. J. Amaratunga
    Soft Computing, 2020, 24 : 2999 - 3023
  • [38] Duality evolution: an efficient approach to constraint handling in multi-objective particle swarm optimization
    Sorkhabi, Amin Ebrahim
    Amiri, Mehran Deljavan
    Khanteymoori, Ali Reza
    SOFT COMPUTING, 2017, 21 (24) : 7251 - 7267
  • [39] Surrogate-assisted constraint-handling technique for parametric multi-objective optimization
    Tsai, Ying-Kuan
    Malak Jr, Richard J.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2024, 67 (09)
  • [40] Kriging-based infill sampling criterion for constraint handling in multi-objective optimization
    Martinez-Frutos, Jesus
    Herrero-Perez, David
    JOURNAL OF GLOBAL OPTIMIZATION, 2016, 64 (01) : 97 - 115