Structure-conditioned adversarial learning for unsupervised domain adaptation

被引:6
|
作者
Wang, Hui [1 ]
Tian, Jian [1 ]
Li, Songyuan [1 ]
Zhao, Hanbin [1 ]
Wu, Fei [1 ]
Li, Xi [1 ]
机构
[1] Zhejiang Univ, Coll Comp Sci, Hangzhou, Peoples R China
关键词
Unsupervised domain adaptation; Image classification; Adversarial learning; Clustering;
D O I
10.1016/j.neucom.2022.04.094
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised domain adaptation (UDA) typically carries out knowledge transfer from a label-rich source domain to an unlabeled target domain by adversarial learning. In principle, existing UDA approaches mainly focus on the global distribution alignment between domains while ignoring the intrinsic local distribution properties. Motivated by this observation, we propose an end-to-end structure-conditioned adversarial learning scheme (SCAL) that is able to preserve the intra-class compactness during domain distribution alignment. By using local structures as structure-aware conditions, the proposed scheme is implemented in a structure-conditioned adversarial learning pipeline. The above learning procedure is iteratively performed by alternating between local structures establishment and structure conditioned adversarial learning. Experimental results demonstrate the effectiveness of the proposed scheme in UDA scenarios.(c) 2022 Published by Elsevier B.V.
引用
收藏
页码:216 / 226
页数:11
相关论文
共 50 条
  • [11] LARGE SCALE UNSUPERVISED DOMAIN ADAPTATION OF SEGMENTATION NETWORKS WITH ADVERSARIAL LEARNING
    Deng, Xueqing
    Yang, Hsiuhan Lexie
    Makkar, Nikhil
    Lunga, Dalton
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4955 - 4958
  • [12] Incremental Unsupervised Adversarial Domain Adaptation for Federated Learning in IoT Networks
    Huang, Yan
    Du, Mengxuan
    Zheng, Haifeng
    Feng, Xinxin
    2022 18TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING, MSN, 2022, : 186 - 190
  • [13] Unsupervised domain adaptation with adversarial distribution adaptation network
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    Xing, Ying
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (13): : 7709 - 7721
  • [14] Unsupervised domain adaptation with adversarial distribution adaptation network
    Qiang Zhou
    Wen’an Zhou
    Shirui Wang
    Ying Xing
    Neural Computing and Applications, 2021, 33 : 7709 - 7721
  • [15] Domain-invariant adversarial learning with conditional distribution alignment for unsupervised domain adaptation
    Wang, Xingmei
    Sun, Boxuan
    Dong, Hongbin
    IET COMPUTER VISION, 2020, 14 (08) : 642 - 649
  • [16] DELEGATED ADVERSARIAL TRAINING FOR UNSUPERVISED DOMAIN ADAPTATION
    Kim, Dongwan
    Lee, Seungmin
    Kim, Namil
    Jeong, Seong-Gyun
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 2521 - 2525
  • [17] Meta Adversarial Weight for Unsupervised Domain Adaptation
    Liu, Chang
    Wang, Lichen
    Fu, Yun
    PROCEEDINGS OF THE 2022 SIAM INTERNATIONAL CONFERENCE ON DATA MINING, SDM, 2022, : 10 - 18
  • [18] Hybrid adversarial network for unsupervised domain adaptation
    Zhang, Changchun
    Zhao, Qingjie
    Wang, Yu
    INFORMATION SCIENCES, 2020, 514 : 44 - 55
  • [19] Adversarial Feature Augmentation for Unsupervised Domain Adaptation
    Volpi, Riccardo
    Morerio, Pietro
    Savarese, Silvio
    Murino, Vittorio
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 5495 - 5504
  • [20] Multiple adversarial networks for unsupervised domain adaptation
    Zhou, Qiang
    Zhou, Wen'an
    Wang, Shirui
    Xing, Ying
    KNOWLEDGE-BASED SYSTEMS, 2021, 212 (212)