Implantation and Diffusion of Silicon Marker Layers in In0.53Ga0.47As

被引:4
|
作者
Aldridge, Henry, Jr. [1 ]
Lind, Aaron G. [1 ]
Bomberger, Cory C. [2 ]
Puzyrev, Yevgeniy [3 ,4 ]
Hatem, Christopher [5 ]
Gwilliam, Russell M. [6 ]
Zide, Joshua M. O. [2 ]
Pantelides, Sokrates T. [3 ,4 ]
Law, Mark E. [1 ]
Jones, Kevin S. [1 ]
机构
[1] Univ Florida, Dept Mat Sci & Engn, Gainesville, FL 32611 USA
[2] Univ Delaware, Dept Mat Sci & Engn, Newark, DE 19716 USA
[3] Vanderbilt Univ, Dept Phys & Astron, Nashville, TN 37235 USA
[4] Vanderbilt Univ, Dept Elect Engn & Comp Sci, 221 Kirkland Hall, Nashville, TN 37235 USA
[5] Appl Mat Inc, Gloucester, MA 01930 USA
[6] Univ Surrey, Adv Technol Inst, Ion Beam Ctr, Guildford GU2 5XH, Surrey, England
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
InGaAs; III-V; MBE; implantation; annealing; processing; diffusion; DOPANT DIFFUSION; SELF-DIFFUSION; SI; MECHANISMS; GE;
D O I
10.1007/s11664-016-4616-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Continued effort has been placed on maximizing activation while controlling the diffusion of silicon doping in InGaAs for present and future complementary metal-oxide semiconductor devices. In order to explore the diffusion and activation behavior, Si marker layers were grown in InGaAs on InP by molecular beam epitaxy. The nature of Si diffusion was explored using a series of isoelectronic implants to introduce excess point defects near the layer. It was observed that excess interstitials reduce the Si diffusion consistent with a vacancy-driven diffusion mechanism. A diffusion and activation model implemented in the Florida object oriented process simulator has been developed to predict silicon diffusion behavior over a variety of temperatures and times. Using current and previous experimental data and complimentary density functional theory results, the diffusion model employs the Si-III-V-III pair as the primary mechanism for silicon diffusion in InGaAs.
引用
收藏
页码:4282 / 4287
页数:6
相关论文
共 50 条
  • [21] Surface passivation of In0.53Ga0.47As ridge quantum wires using silicon interface control layers
    Fujikura, H
    Kodama, S
    Hashizume, T
    Hasegawa, H
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1996, 14 (04): : 2888 - 2894
  • [22] Surface passivation of In0.53Ga0.47As ridge quantum wires using silicon interface control layers
    Fujikura, Hajime
    Kodama, Satoshi
    Hashizume, Tamotsu
    Hasegawa, Hideki
    Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1996, 14 (04):
  • [23] Zinc(P) diffusion in In0.53Ga0.47As and GaSb for TPV devices
    Karlina, LB
    Ber, BY
    Blagnov, PA
    Kulagina, MM
    Vlasov, AS
    THERMOPHOTOVOLTAIC GENERATION OF ELECTRICITY, 2003, 653 : 373 - 382
  • [24] Inversion in the In0.53Ga0.47As metal-oxide-semiconductor system: Impact of the In0.53Ga0.47As doping concentration
    O'Connor, E.
    Cherkaoui, K.
    Monaghan, S.
    Sheehan, B.
    Povey, I. M.
    Hurley, P. K.
    APPLIED PHYSICS LETTERS, 2017, 110 (03)
  • [25] Impact ionisation coefficients of In0.53Ga0.47As
    Ng, JS
    David, JPR
    Rees, GJ
    Pinches, SM
    Hill, G
    IEE PROCEEDINGS-OPTOELECTRONICS, 2001, 148 (5-6): : 225 - 228
  • [26] Avalanche breakdown voltage of In0.53Ga0.47As
    Ng, JS
    David, JPR
    Rees, GJ
    Allam, J
    JOURNAL OF APPLIED PHYSICS, 2002, 91 (08) : 5200 - 5202
  • [27] In0.53Ga0.47As Triangular GAA MOSFETs
    Khaouani, Mohammed
    Kourdi, Zakarya
    2018 INTERNATIONAL CONFERENCE ON COMMUNICATIONS AND ELECTRICAL ENGINEERING (ICCEE), 2018, : 1 - +
  • [28] GROWTH OF THIN IN0.53GA0.47AS LAYERS BY LIQUID-PHASE EPITAXY
    WHITNEY, PS
    FONSTAD, CG
    JOURNAL OF CRYSTAL GROWTH, 1987, 84 (04) : 676 - 678
  • [29] LARGE ACTIVATION OF PRASEODYMIUM IN IN0.53GA0.47AS
    NOVAK, J
    HASENOHRL, S
    MALACKY, L
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 1993, 8 (05) : 747 - 749
  • [30] Excess noise measurement in In0.53Ga0.47As
    Goh, YL
    Ng, JS
    Tan, CH
    Ng, WK
    David, JPR
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2005, 17 (11) : 2412 - 2414