Serrin-type blow-up criteria for 3D Boussinesq equations

被引:20
|
作者
Qiu, Hua [1 ,2 ]
Du, Yi [3 ]
Yao, Zheng'an [2 ]
机构
[1] S China Agr Univ, Dept Appl Math, Guangzhou 510642, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
[3] S China Normal Univ, Sch Math Sci, Guangzhou 510631, Guangdong, Peoples R China
关键词
Boussinesq equations; regularity criteria; Serrin-type criterion; GLOBAL WELL-POSEDNESS; LOCAL EXISTENCE; REGULARITY; SYSTEM;
D O I
10.1080/00036811.2010.492505
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we consider the three-dimensional Boussinesq equations with the incompressibility condition. We obtain some Serrin-type regularity conditions for the three-dimensional Boussinesq equations.
引用
收藏
页码:1603 / 1613
页数:11
相关论文
共 50 条
  • [41] Regularity properties and blow-up of the solutions for improved Boussinesq equations
    Shakhmurov, Veli B.
    Shahmurov, Rishad
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2021, (89) : 1 - 21
  • [42] Some Serrin-type regularity criteria for weak solutions to the Navier-Stokes equations
    Zhang, Zujin
    Yao, Zheng-an
    Lu, Ming
    Ni, Lidiao
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [43] LOGARITHMICALLY IMPROVED BLOW-UP CRITERIA FOR THE 3D NONHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VACUUM
    Hou, Qianqian
    Xu, Xiaojing
    Ye, Zhuan
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [44] Blow-up criterion for the density dependent inviscid Boussinesq equations
    Li Li
    Yanping Zhou
    Boundary Value Problems, 2020
  • [45] Blow-up criterion for the density dependent inviscid Boussinesq equations
    Li, Li
    Zhou, Yanping
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [46] A Blow-Up Criterion for 3D Compressible Isentropic Magnetohydrodynamic Equations with Vacuum
    Wang, Shujuan
    Ren, Jialin
    Su, Rijian
    MATHEMATICS, 2024, 12 (05)
  • [47] The 3D Incompressible Euler Equations with a Passive Scalar: A Road to Blow-Up?
    John D. Gibbon
    Edriss S. Titi
    Journal of Nonlinear Science, 2013, 23 : 993 - 1000
  • [48] LOCAL EXISTENCE AND BLOW-UP CRITERION OF 3D IDEAL MAGNETOHYDRODYNAMICS EQUATIONS
    Kim, Jae-Myoung
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (06) : 1759 - 1766
  • [49] LOCAL EXISTENCE AND BLOW-UP CRITERION OF 3D IDEAL MAGNETOHYDRODYNAMICS EQUATIONS
    Jae-Myoung KIM
    Acta Mathematica Scientia(English Series), 2018, 38 (06) : 1759 - 1766
  • [50] A Blow-Up Criterion for 3D Nonhomogeneous Incompressible Magnetohydrodynamic Equations with Vacuum
    Wang, Shujuan
    Tian, Miaoqing
    Su, Rijian
    JOURNAL OF FUNCTION SPACES, 2022, 2022