Combining synaptic and cellular resonance in a feed-forward neuronal network

被引:8
|
作者
Drover, Jonathan D. [1 ]
Tohidi, Vahid
Bose, Amitabha
Nadim, Farzan
机构
[1] New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
[2] Rutgers State Univ, Dept Biol Sci, Newark, NJ 07102 USA
关键词
synaptic resonance; cellular resonance; subthreshold oscillations;
D O I
10.1016/j.neucom.2006.10.135
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We derive a mathematical theory to explain the subthreshold resonance response of a neuron to synaptic input. The theory shows how a neuron combines information from its intrinsic resonant properties with those of the synapse to determine the neuron's generalized resonance response. Our results show that the maximal response of a postsynaptic neuron can lie between the preferred intrinsic frequency of the neuron and the synaptic resonance frequency. We compare our theoretical results to parallel findings on experiments of the crab pyloric central pattern generator. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:2041 / 2045
页数:5
相关论文
共 50 条
  • [31] Response analysis of feed-forward neural network predictors
    Varone, B
    Tanskanen, JMA
    Ovaska, SJ
    1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3309 - 3312
  • [33] Quantum implementation of an artificial feed-forward neural network
    Tacchino, Francesco
    Barkoutsos, Panagiotis
    Macchiavello, Chiara
    Tavernelli, Ivano
    Gerace, Dario
    Bajoni, Daniele
    QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04)
  • [34] Modeling parallel feed-forward based compression network
    Shalinie, S. Mercy
    INTERNATIONAL JOURNAL OF PARALLEL EMERGENT AND DISTRIBUTED SYSTEMS, 2006, 21 (04) : 227 - 237
  • [35] Study of Full Interval Feed-forward Neural Network
    Guan Shou-ping
    Liang Rong-ye
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 2652 - 2655
  • [36] A Feed-Forward Neural Network for Solving Stokes Problem
    Baymani, M.
    Effati, S.
    Kerayechian, A.
    ACTA APPLICANDAE MATHEMATICAE, 2011, 116 (01) : 55 - 64
  • [37] A Feed-Forward Neural Network for Solving Stokes Problem
    M. Baymani
    S. Effati
    A. Kerayechian
    Acta Applicandae Mathematicae, 2011, 116
  • [38] A hierarchical feed-forward network for object detection tasks
    Bax, I
    Heidemann, G
    Ritter, H
    INDEPENDENT COMPONENT ANALYSES, WAVELETS, UNSUPERVISED SMART SENSORS, AND NEURAL NETWORKS III, 2005, 5818 : 144 - 152
  • [39] Using feed-forward networks to infer the activity of feed-back neuronal networks
    Xinxian Huang
    Farzan Nadim
    Amitabha Bose
    BMC Neuroscience, 11 (Suppl 1)
  • [40] Weak Quasiperiodic Signal Propagation through Multilayer Feed-Forward Hodgkin-Huxley Neuronal Network
    Yao, Yuangen
    Gong, Bowen
    Lu, Daxiang
    Gui, Rong
    COMPLEXITY, 2020, 2020