Local existence and uniqueness of skew mean curvature flow

被引:5
|
作者
Song, Chong [1 ]
机构
[1] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
SCHRODINGER FLOW; DYNAMICS; MAP; SOBOLEV;
D O I
10.1515/crelle-2021-0023
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Skew Mean Curvature Flow (SMCF) is a Schrodinger-type geometric flow canonically defined on a co-dimension two submanifold, which generalizes the famous vortex filament equation in fluid dynamics. In this paper, we prove the local existence and uniqueness of general-dimensional SMCF in Euclidean spaces.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [21] Uniqueness and existence of spirals moving by forced mean curvature motion
    Forcadel, Nicolas
    Imbert, Cyril
    Monneau, Regis
    INTERFACES AND FREE BOUNDARIES, 2012, 14 (03) : 365 - 400
  • [22] Existence and uniqueness for planar anisotropic and crystalline curvature flow
    Chambolle, Antonin
    Novaga, Matteo
    VARIATIONAL METHODS FOR EVOLVING OBJECTS, 2015, 67 : 87 - 113
  • [23] On the existence of mean curvature flow with transport term
    Liu, Chun
    Sato, Norifumi
    Tonegawa, Yoshihiro
    INTERFACES AND FREE BOUNDARIES, 2010, 12 (02) : 251 - 277
  • [24] Longtime existence of the Lagrangian mean curvature flow
    Knut Smoczyk
    Calculus of Variations and Partial Differential Equations, 2004, 20 : 25 - 46
  • [25] Uniqueness of compact tangent flows in Mean Curvature Flow
    Schulze, Felix
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 690 : 163 - 172
  • [26] Global Existence of a Mean Curvature Flow in a Cone
    Ai, Neng
    Lou, Bendong
    Song, Jiashu
    Yang, Pei
    Zhang, Xin
    JOURNAL OF MATHEMATICAL STUDY, 2024, 57 (03) : 278 - 293
  • [27] Uniqueness of entire graphs evolving by mean curvature flow
    Daskalopoulos, Panagiota
    Saez, Mariel
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (796): : 201 - 227
  • [28] Longtime existence of the Lagrangian mean curvature flow
    Smoczyk, K
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (01) : 25 - 46
  • [29] DISLOCATION DYNAMICS WITH A MEAN CURVATURE TERM: SHORT TIME EXISTENCE AND UNIQUENESS
    Forcadel, Nicolas
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2008, 21 (3-4) : 285 - 304
  • [30] A local estimate for the mean curvature flow
    Wang, Zhen
    RESULTS IN MATHEMATICS, 2023, 78 (01)