Flame retardancy mechanisms of poly(1,4-butylene terephthalate) containing microencapsulated ammonium polyphosphate and melamine cyanurate

被引:25
|
作者
Yang, Wei [1 ,2 ]
Lu, Hongdian [1 ,3 ]
Tai, Qilong [1 ,2 ]
Qiao, Zhihua [1 ,2 ]
Hu, Yuan [1 ,2 ]
Song, Lei [1 ]
Yuen, Richard K. K. [2 ,4 ]
机构
[1] Univ Sci & Technol China, State Key Lab Fire Sci, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, USTC CityU Joint Adv Res Ctr, Suzhou Inst Adv Study, Suzhou 215123, Jiangsu, Peoples R China
[3] Hefei Univ, Dept Chem & Mat Engn, Hefei 230022, Anhui, Peoples R China
[4] City Univ Hong Kong, Dept Bldg & Construct, Kowloon, Hong Kong, Peoples R China
基金
中国博士后科学基金;
关键词
poly(1,4-butylene terephthalate); microencapsulated ammonium polyphosphate; melamine cyanurate; flame retardancy; mechanisms; POLY(BUTYLENE TEREPHTHALATE); THERMAL-DECOMPOSITION; RED PHOSPHORUS; DEGRADATION; PENTAERYTHRITOL; BEHAVIOR; MICROCAPSULES; MICROSPHERES; INTUMESCENCE; COMBUSTION;
D O I
10.1002/pat.1735
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The flame retardancy mechanisms of poly(1,4-butylene terephthalate) (PBT) containing microencapsulated ammonium polyphosphate (MAPP) and melamine cyanurate (MC) were investigated via pyrolysis analysis (thermo-gravimetric analysis (TGA), real-time Fourier transform infrared (FTIR), TG-IR), cone calorimeter test, combustion tests (limited oxygen index (LOI), UL-94), and residue analysis (scanning electron microscopy (SEM)). A loading of 20 wt% MC to PBT gave the PBT composites an LOI of 26%, V-2 classification in UL-94 test and a high peak heat release rate (HRR) in cone calorimeter test. Adding APP to PBT/MC composites did not improve their flame retardancy. In comparison with the addition of ammonium polyphosphate (APP) to PBT, MAPP with silica gel shell and MAPP with polyurethane shell both promoted the intumescent char-forming and improved the flame retardancy of PBT through different mechanisms in the presence of MC. These two halogen-free PBT composites with V-0 classification according to UL-94 test were obtained; their LOI were 32 and 33%, respectively. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:2136 / 2144
页数:9
相关论文
共 50 条
  • [41] Synergistic Flame Retardant and Suppression Smoke Mechanism of Cerium Phenylphosphonate and Decabromodiphenyl Oxide in Glass. fiber Reinforced Poly (1,4-butylene terephthalate) Composites
    Guo Zhenghong
    Fang Zhengping
    Chen Chao
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2017, 38 (02): : 284 - 293
  • [42] Branched Poly(1,4-Butylene Carbonate-co-Terephthalate)s: LDPE-Like Semicrystalline Thermoplastics
    Park, Seong Yeon
    Chun, Jiseul
    Jeon, Jong Yeob
    Lee, Pyung Cheon
    Hwang, Yongtaek
    Song, Bo Geun
    Ramos, Rafael
    Ryu, Chang Y.
    Lee, Bun Yeoul
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2015, 53 (07) : 914 - 923
  • [43] TRANSESTERIFICATION REACTIONS BETWEEN A POLYARYLATE AND POLY(1,4-BUTYLENE TEREPHTHALATE) - IDENTIFICATION OF INTERCHANGE UNITS VIA MODEL COMPOUNDS
    ESPINOSA, E
    FERNANDEZBERRIDI, MJ
    MAIZA, I
    VALERO, M
    POLYMER, 1993, 34 (02) : 382 - 388
  • [44] Mechanically robust and flame-retardant poly(lactide)/poly(butylene adipate-co-terephthalate) composites based on carbon nanotubes and ammonium polyphosphate
    Wang, Ping
    Wang, Zhenfeng
    Yan, Tong
    Yang, Liyuan
    Yang, Li
    Ling, Jiacheng
    Feng, Shaojie
    Xu, Pei
    Ding, Yunsheng
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2022, 221 : 573 - 584
  • [45] Effect of a novel phosphorous-nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate)
    Gao, F
    Tong, LF
    Fang, ZP
    POLYMER DEGRADATION AND STABILITY, 2006, 91 (06) : 1295 - 1299
  • [46] Chemical Interaction-Induced Evolution of Phase Compatibilization in Blends of Poly(hydroxy ether of bisphenol-A)/Poly(1,4-butylene terephthalate)
    Liu, Jing
    Wang, Hsiang-Ching
    Su, Chean-Cheng
    Yang, Cheng-Fu
    MATERIALS, 2018, 11 (09)
  • [47] Influence of glycidyl methacrylate grafted poly (butylene succinate) (PBS-g-GMA) on flame retardancy and mechanical properties of water hyacinth fiber/ammonium polyphosphate/poly (butylene succinate) composites
    Suwanniroj, Anothai
    Suppakarn, Nitinat
    JOURNAL OF APPLIED POLYMER SCIENCE, 2022, 139 (43)
  • [48] Preparation of high-molecular-weight poly(1,4-butylene carbonate-co-terephthalate) and its thermal properties
    Lee, Jung Jae
    Jeon, Jong Yeob
    Park, Ji Hae
    Jang, Youngeun
    Hwang, Eun Yeong
    Lee, Bun Yeoul
    RSC ADVANCES, 2013, 3 (48): : 25823 - 25829
  • [49] ION-CONTAINING POLYMERS .1. SYNTHESIS AND PROPERTIES OF POLY(1,4-BUTYLENE ISOPHTHALATE) CONTAINING SODIUM-SULFONATE GROUPS
    PILATI, F
    MANARESI, P
    RUPERTO, MG
    BONORA, V
    MUNARI, A
    FIORINI, M
    POLYMER, 1993, 34 (11) : 2413 - 2421
  • [50] Incorporation of a flame retardancy enhancing phosphorus-containing diol into poly(butylene terephthalate) via solid state polycondensation: A comparative study
    Sablong, Rafael
    Duchateau, Robbert
    Koning, Cor E.
    Pospiech, Doris
    Korwitz, Andreas
    Komber, Hartmut
    Starke, Sandra
    Haeussler, Liane
    Jehnichen, Dieter
    Landwehr, Maria Auf Der
    POLYMER DEGRADATION AND STABILITY, 2011, 96 (03) : 334 - 341