NEW ESTIMATORS OF THE PICKANDS DEPENDENCE FUNCTION AND A TEST FOR EXTREME-VALUE DEPENDENCE

被引:46
|
作者
Buecher, Axel [1 ]
Dette, Holger [1 ]
Volgushev, Stanislav [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, D-44780 Bochum, Germany
来源
ANNALS OF STATISTICS | 2011年 / 39卷 / 04期
关键词
Extreme-value copula; minimum distance estimation; Pickands dependence function; weak convergence; empirical copula process; test for extreme-value dependence; VALUE DISTRIBUTIONS; NONPARAMETRIC-ESTIMATION; VALUE COPULAS; MODELS;
D O I
10.1214/11-AOS890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new class of estimators for Pickands dependence function which is based on the concept of minimum distance estimation. An explicit integral representation of the function A* (t), which minimizes a weighted L(2)-distance between the logarithm of the copula C(y(1-t), y(t)) and functions of the form A (t) log(y) is derived. If the unknown copula is an extreme-value copula, the function A* (t) coincides with Pickands dependence function. Moreover, even if this is not the case, the function A* (t) always satisfies the boundary conditions of a Pickands dependence function. The estimators are obtained by replacing the unknown copula by its empirical counterpart and weak convergence of the corresponding process is shown. A comparison with the commonly used estimators is performed from a theoretical point of view and by means of a simulation study. Our asymptotic and numerical results indicate that some of the new estimators outperform the estimators, which were recently proposed by Genest and Segers [Ann. Statist. 37 (2009) 2990-3022]. As a by-product of our results, we obtain a simple test for the hypothesis of an extreme-value copula, which is consistent against all positive quadrant dependent alternatives satisfying weak differentiability assumptions of first order.
引用
收藏
页码:1963 / 2006
页数:44
相关论文
共 50 条
  • [21] The extreme-value dependence of Asia-Pacific equity markets
    Bekiros, Stelios D.
    Georgoutsos, Dimitris A.
    JOURNAL OF MULTINATIONAL FINANCIAL MANAGEMENT, 2008, 18 (03) : 197 - 208
  • [22] Asymptotic distribution of a Pickands-type estimator of the extreme-value index
    Gardes, L
    Girard, S
    COMPTES RENDUS MATHEMATIQUE, 2005, 341 (01) : 53 - 58
  • [23] Asymptotically unbiased estimators for the extreme-value index
    Peng, L
    STATISTICS & PROBABILITY LETTERS, 1998, 38 (02) : 107 - 115
  • [24] A class of Pickands-type estimators for the extreme value index
    Yun, S
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2000, 83 (01) : 113 - 124
  • [25] Forecasting performance of extreme-value volatility estimators
    Vipul
    Jacob, Joshy
    JOURNAL OF FUTURES MARKETS, 2007, 27 (11) : 1085 - 1105
  • [26] Nonparametric rank-based tests of bivariate extreme-value dependence
    Kojadinovic, Ivan
    Yan, Jun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (09) : 2234 - 2249
  • [27] Large-sample tests of extreme-value dependence for multivariate copulas
    Kojadinovic, Ivan
    Segers, Johan
    Yan, Jun
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2011, 39 (04): : 703 - 720
  • [28] Bayesian estimation of bivariate Pickands dependence function
    Ahmadabadi, Alireza
    Gholami, Gholamhossien
    Hudaverdi, Burcu
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 51 (06): : 1723 - 1735
  • [29] LOCAL ROBUST ESTIMATION OF THE PICKANDS DEPENDENCE FUNCTION
    Escobar-Bach, Mikael
    Goegebeur, Yuri
    Guillou, Armelle
    ANNALS OF STATISTICS, 2018, 46 (06): : 2806 - 2843
  • [30] ON SIMPLE BLOCK ESTIMATORS FOR THE PARAMETERS OF THE EXTREME-VALUE DISTRIBUTION
    HUSLER, J
    SCHUPBACH, M
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1986, 15 (01) : 61 - 76