Non-Bipartite Distance-Regular Graphs with Diameters 5, 6 and a Smallest Eigenvalue

被引:0
|
作者
Li, Jing [1 ]
Wang, Yan [2 ]
Hou, Bo [1 ]
Gao, Weidong [3 ]
Gao, Suogang [1 ]
机构
[1] Hebei Normal Univ, Sch Math Sci, Shijiazhuang 050024, Hebei, Peoples R China
[2] Hebei Univ Econ & Business, Coll Math & Stat, Shijiazhuang 050061, Hebei, Peoples R China
[3] Tianjin Univ, Ctr Appl Math, Tianjin 300072, Peoples R China
关键词
Distance-regular graphs; Valancy; Smallest eigenvalue; 2ND LARGEST;
D O I
10.1007/s00373-022-02458-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let C be a non-bipartite distance-regular graphs with valancy k, diameter D and a smallest eigenvalue theta(min). In 2019, Qiao, Jing and Koolen classified the non-bipartite distance-regular graphs with theta(min) <= D-1/D k for D = 4; 5. In this paper, we classify the non-bipartite distance-regular graphs with theta(min) <= -D-2/D-1 k for D = 5, 6. We remark that the technique of this paper is an extension of the approach taken by Qiao, Jing and Koolen on the study of non-bipartite distance-regular graphs in 2019.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Distance-regular Cayley graphs with least eigenvalue-2
    Abdollahi, Alireza
    van Dam, Edwin R.
    Jazaeri, Mojtaba
    DESIGNS CODES AND CRYPTOGRAPHY, 2017, 84 (1-2) : 73 - 85
  • [42] Ordering connected non-bipartite graphs by the least Q-eigenvalue
    Zhang, Rong
    Guo, Shu-Guang
    Yu, Guanglong
    ARS COMBINATORIA, 2018, 141 : 3 - 20
  • [43] Distance-regular graphs
    van Dam, Edwin R.
    Koolen, Jack H.
    Tanaka, Hajime
    ELECTRONIC JOURNAL OF COMBINATORICS, 2016, : 1 - 156
  • [44] Non-bipartite graphs of fixed order and size that minimize the least eigenvalue
    Jovovic, Ivana
    Koledin, Tamara
    Stanic, Zoran
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 477 : 148 - 164
  • [45] Distance-regular graphs with exactly one positive q-distance eigenvalue
    Koolen, Jack H.
    Abdullah, Mamoon
    Gebremichel, Brhane
    Hayat, Sakander
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2024, 689 : 230 - 246
  • [46] THE DISTANCE-REGULAR ANTIPODAL COVERS OF CLASSICAL DISTANCE-REGULAR GRAPHS
    VANBON, JTM
    BROUWER, AE
    COMBINATORICS /, 1988, 52 : 141 - 166
  • [47] Bipartite Q-polynomial distance-regular graphs and uniform posets
    Miklavic, Stefko
    Terwilliger, Paul
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2013, 38 (02) : 225 - 242
  • [48] The smallest eigenvalues of Hamming graphs, Johnson graphs and other distance-regular graphs with classical parameters
    Brouwer, Andries E.
    Cioaba, Sebastian M.
    Ihringer, Ferdinand
    McGinnis, Matt
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2018, 133 : 88 - 121
  • [49] Bipartite Q-polynomial quotients of antipodal distance-regular graphs
    Caughman, JS
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 76 (02) : 291 - 296
  • [50] Divisibility conditions for intersection numbers of certain bipartite distance-regular graphs
    Habib, Alexander
    Maclean, Mark S.
    INVOLVE, A JOURNAL OF MATHEMATICS, 2025, 18 (01):