Stable deep Koopman model predictive control for solar parabolic-trough collector field

被引:10
|
作者
Gholaminejad, Tahereh [1 ]
Khaki-Sedigh, Ali [1 ]
机构
[1] K N Toosi Univ Technol, Fac Elect Engn, Ind Control Ctr Excellence, Tehran, Iran
关键词
Solar collector field; Data-driven modeling; Koopman operator; Deep learning; Model predictive control; Stability proof; THERMAL POWER; CONTROL SCHEMES; OPERATOR; MPC;
D O I
10.1016/j.renene.2022.08.012
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Concentrated Solar Power plants (CSP) have the energy storage capability to generate electricity when sunlight is scarce. However, due to the highly non-linear dynamics of these systems, a simple linear controller will not be able to overcome the variable dynamics and multiple disturbance sources affecting it. In this paper, a deep Model Predictive Control (MPC) based on the Koopman operator is proposed and applied to control the Heat Transfer Fluid (HTF) temperature of a distributed-parameter model of the ACUREX solar collector field located at Almeria, Spain. The Koopman operator is an infinite-dimensional linear operator that fully captures a system's non-linear dynamics through the linear evolution of functions of the state-space. However, one of the major problems is identifying a Koopman linear model for a non-linear system. Koopman eigenfunctions are involved in converting a non-linear model to a Koopman-based linear model. In this paper, a deep Long Short-Term Memory (LSTM) autoencoder is designed to calculate Koopman eigenfunctions of the solar collector field. The Koopman linear model is then used to design a linear MPC with terminal components to ensure closed-loop stability guarantees. Simulation results are utilized to show the satisfactory tracking performance of the proposed approach.
引用
收藏
页码:492 / 504
页数:13
相关论文
共 50 条
  • [41] Inspection of dynamic modelling and control of a parabolic trough solar collector
    Goel A.
    Manik G.
    Verma O.P.
    Materials Today: Proceedings, 2023, 80 : 92 - 97
  • [42] The SkyTrough™ Parabolic Trough Solar Collector
    Farr, Adrian
    Gee, Randy
    ES2009: PROCEEDINGS OF THE ASME 3RD INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, VOL 2, 2009, : 573 - 580
  • [43] A review of solar parabolic trough collector
    Jebasingh, V. K.
    Herbert, G. M. Joselin
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 54 : 1085 - 1091
  • [44] A hybrid direct-absorption parabolic-trough solar collector combining both volumetric and surface absorption
    Qin, Caiyan
    Lee, Jungchul
    Lee, Bong Jae
    Applied Thermal Engineering, 2021, 185
  • [45] Neuro-fuzzy estimator, with complexity reduction, of the temperatures of a parabolic-trough solar field
    Escano, J. M.
    Sanchez, A. J.
    Ceballos, M.
    Gallego, A. J.
    Camacho, E. F.
    REVISTA IBEROAMERICANA DE AUTOMATICA E INFORMATICA INDUSTRIAL, 2021, 18 (02): : 134 - 145
  • [46] Estimation of effective solar irradiation using an unscented Kalman filter in a parabolic-trough field
    Gallego, A. J.
    Camacho, E. F.
    SOLAR ENERGY, 2012, 86 (12) : 3512 - 3518
  • [47] MAN Solar Millennium preps third parabolic-trough solar plant
    不详
    POWER, 2008, 152 (09) : 18 - 18
  • [48] Neuro-fuzzy estimator, with complexity reduction, of the temperatures of a parabolic-trough solar field
    Escaño J.M.
    Sánchez A.J.
    Ceballos M.
    Gallego A.J.
    Camacho E.F.
    RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 2021, 18 (02): : 138 - 149
  • [49] Clustering-based model predictive control of solar parabolic trough plants
    Chanfreut, Paula
    Maestre, Jose M.
    Gallego, Antonio
    Annaswamy, Anuradha M.
    Camacho, Eduardo F.
    RENEWABLE ENERGY, 2023, 216
  • [50] Performance analysis and design optimization of a direct-absorption parabolic-trough solar collector with concentric nanofluid partitions
    Qin, Caiyan
    Seo, Junyong
    Yoon, Siwon
    Lee, Bong Jae
    Zhu, Qunzhi
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2025, 282