An Attention Hierarchical Topic Modeling

被引:0
|
作者
Yin, Chunyan [1 ]
Chen, Yongheng [2 ]
Zuo, Wanli [3 ]
机构
[1] Lingnan Normal Univ, Business Sch, Zhanjiang 524048, Peoples R China
[2] Lingnan Normal Univ, Sch Informat Engn, Zhanjiang 524048, Peoples R China
[3] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
hierarchical probabilistic model; attention mechanism; recommendation system; topic modeling; CLASSIFICATION;
D O I
10.1134/S1054661821040295
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Probabilistic topic models have been used to detect topic-based content presentations when facing a collection of documents. However, topic models capture the semantic information according to reasonable simplifying hypotheses, which ignore the worthwhile word-order information. This paper proposes an attention hierarchical topic modeling, which adopts attention mechanism to unify topic embedding and word embedding together into a framework to enhance the clustering effect of hierarchical Dirichlet process. Otherwise, the multi-information integration Chinese restaurant franchise is adopted to construct this model, which further combines timestamp, user, and topic label to optimize topic modeling. Extensive experiments on real-life applications show that our model outperforms several strong baselines on document modeling and classification.
引用
收藏
页码:722 / 729
页数:8
相关论文
共 50 条
  • [21] Hierarchical Attention BLSTM for Modeling Sentences and Documents
    Niu, Xiaolei
    Hou, Yuexian
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT II, 2017, 10635 : 167 - 177
  • [22] Neural nonnegative matrix factorization for hierarchical multilayer topic modeling
    Haddock, Jamie
    Will, Tyler
    Vendrow, Joshua
    Zhang, Runyu
    Molitor, Denali
    Needell, Deanna
    Gao, Mengdi
    Sadovnik, Eli
    SAMPLING THEORY SIGNAL PROCESSING AND DATA ANALYSIS, 2024, 22 (01):
  • [23] NEURAL NONNEGATIVE MATRIX FACTORIZATION FOR HIERARCHICAL MULTILAYER TOPIC MODELING
    Gao, M.
    Haddock, J.
    Molitor, D.
    Needell, D.
    Sadovnik, E.
    Will, T.
    Zhang, R.
    2019 IEEE 8TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP 2019), 2019, : 6 - 10
  • [24] Online Topic Evolution Modeling Based on Hierarchical Dirichlet Process
    Ma, Tao
    Qu, Dacheng
    Ma, Rui
    Feng, Wei
    Li, Kan
    2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, : 400 - 405
  • [25] Hierarchical Topic Modeling of Twitter Data for Online Analytical Processing
    Yu, Dongjin
    Xu, Dengwei
    Wang, Dongjing
    Ni, Zhiyong
    IEEE ACCESS, 2019, 7 : 12373 - 12385
  • [26] Unsupervised Terminological Ontology Learning based on Hierarchical Topic Modeling
    Zhu, Xiaofeng
    Klabjan, Diego
    Bless, Patrick N.
    2017 IEEE 18TH INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION (IEEE IRI 2017), 2017, : 32 - 41
  • [27] Topic-aware hierarchical multi-attention network for text classification
    Ye Jiang
    Yimin Wang
    International Journal of Machine Learning and Cybernetics, 2023, 14 : 1863 - 1875
  • [28] Topic-aware hierarchical multi-attention network for text classification
    Jiang, Ye
    Wang, Yimin
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (05) : 1863 - 1875
  • [29] Hiformer: Sequence Modeling Networks With Hierarchical Attention Mechanisms
    Wu, Xixin
    Lu, Hui
    Li, Kun
    Wu, Zhiyong
    Liu, Xunying
    Meng, Helen
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 3993 - 4003
  • [30] Integration of Knowledge Graph Embedding into Topic Modeling with Hierarchical Dirichlet Process
    Li, Dingcheng
    Dadaneh, Siamak Zamani
    Zhang, Jingyuan
    Li, Ping
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 940 - 950