The Effect of Fuel Staging on the Structure and Instability Characteristics of Swirl-Stabilized Flames in a Lean Premixed Multinozzle Can Combustor

被引:41
|
作者
Samarasinghe, Janith [1 ,2 ]
Culler, Wyatt [1 ]
Quay, Bryan D. [1 ]
Santavicca, Domenic A. [1 ]
O'Connor, Jacqueline [1 ]
机构
[1] Penn State Univ, Ctr Combust Power & Prop, University Pk, PA 16802 USA
[2] GE Global Res, 1 Res Circle, Niskayuna, NY 12309 USA
来源
JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME | 2017年 / 139卷 / 12期
关键词
DYNAMICS;
D O I
10.1115/1.4037461
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Fuel staging is a commonly used strategy in the operation of gas turbine engines. In multinozzle combustor configurations, this is achieved by varying fuel flow rate to different nozzles. The effect of fuel staging on flame structure and self-excited instabilities is investigated in a research can combustor employing five swirl-stabilized, lean-premixed nozzles. At an operating condition where all nozzles are fueled equally and the combustor undergoes a self-excited instability, fuel staging successfully suppresses the instability: both when overall equivalence ratio is increased by staging as well as when overall equivalence ratio is kept constant while staging. Increased fuel staging changes the distribution of time-averaged heat release rate in the regions where adjacent flames interact and reduces the amplitudes of heat release rate fluctuations in those regions. Increased fuel staging also causes a breakup in the monotonic phase behavior that is characteristic of convective disturbances that travel along a flame. In particular, heat release rate fluctuations in the middle flame and flame-flame interaction region are out-of-phase with those in the outer flames, resulting in a cancelation of the global heat release rate oscillations. The Rayleigh integral distribution within the combustor shows that during a self-excited instability, the regions of highest heat release rate fluctuation are in phase-with the combustor pressure fluctuation. When staging fuel is introduced, these regions fluctuate out-of-phase with the pressure fluctuation, further illustrating that fuel staging suppresses instabilities through a phase cancelation mechanism.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection
    LaBry, Zachary A.
    Shanbhogue, Santosh J.
    Speth, Raymond L.
    Ghoniem, Ahmed F.
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2011, 33 : 1575 - 1581
  • [22] Visualization of multi-regime turbulent combustion in swirl-stabilized lean premixed flames
    Zhou, Bo
    Li, Qing
    He, Yong
    Petersson, Per
    Li, Zhongshan
    Alden, Marcus
    Bai, Xue-Song
    COMBUSTION AND FLAME, 2015, 162 (07) : 2954 - 2958
  • [23] Bifurcation of flame structure in a lean-premixed swirl-stabilized combustor: transition from stable to unstable flame
    Huang, Y
    Yang, V
    COMBUSTION AND FLAME, 2004, 136 (03) : 383 - 389
  • [24] High temperature fuel impacts on combustion characteristics of a swirl-stabilized combustor
    Corporan, Edwin
    Williams, Veronica
    Stouffer, Scott
    Hendershott, Tyler
    Monfort, Jeff
    FUEL, 2023, 335
  • [25] NUMERICAL INVESTIGATION OF A LEAN PREMIXED SWIRL-STABILIZED HYDROGEN COMBUSTOR AND OPERATIONAL CONDITIONS CLOSE TO FLASHBACK
    Mira, D.
    Lehmkuhl, O.
    Stathopoulos, P.
    Tanneberger, T.
    Reichel, T. G.
    Paschereit, C. O.
    Vazquez, M.
    Houzeaux, G.
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2018, VOL 4B, 2018,
  • [26] Large-eddy simulation of combustion dynamics of lean-premixed swirl-stabilized combustor
    Huang, Y
    Sung, HG
    Hsieh, SY
    Yang, V
    JOURNAL OF PROPULSION AND POWER, 2003, 19 (05) : 782 - 794
  • [27] Effect of Mixing Section Acoustics on Combustion Instability in a Swirl-Stabilized Combustor
    Hwang, Donghyun
    Kang, Cheolwoong
    Ahn, Kyubok
    ENERGIES, 2022, 15 (22)
  • [28] FLASHBACK LIMITS OF PREMIXED H2/CH4 FLAMES IN A SWIRL-STABILIZED COMBUSTOR
    Shelil, Nasser
    Griffiths, Anthony
    Bagdanavicius, Audrius
    Syred, Nick
    PROCEEDINGS OF THE ASME TURBO EXPO 2010, VOL 2, PTS A AND B, 2010, : 1247 - 1258
  • [30] Emission characteristics and combustion instabilities in an oxy-fuel swirl-stabilized combustor
    Li, Guo-neng
    Zhou, Hao
    Cen, Ke-fa
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2008, 9 (11): : 1582 - 1589