Multimodal Pedestrian Trajectory Prediction Based on Relative Interactive Spatial-Temporal Graph

被引:1
|
作者
Zhao, Duan [1 ,2 ]
Li, Tao [1 ,2 ]
Zou, Xiangyu [1 ,2 ]
He, Yaoyi [3 ]
Zhao, Lichang [3 ]
Chen, Hui [3 ]
Zhuo, Minmin [3 ]
机构
[1] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221008, Jiangsu, Peoples R China
[2] Natl Joint Engn Lab Internet Appl Technol Mines, Xuzhou 221008, Jiangsu, Peoples R China
[3] Tiandi Changzhou Automat Co Ltd, Changzhou 213000, Jiangsu, Peoples R China
来源
IEEE ACCESS | 2022年 / 10卷
关键词
Trajectory; Predictive models; Hidden Markov models; Logic gates; Generative adversarial networks; Legged locomotion; Visualization; Pedestrian trajectory prediction; spatial-temporal graph; time attention; relative scaled dot product attention; generative adversarial network; ATTENTION; MODEL;
D O I
10.1109/ACCESS.2022.3200066
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Predicting and understanding pedestrian intentions is crucial for autonomous vehicles and mobile robots to navigate in a crowd. However, the movement of pedestrian is random. Pedestrian trajectory modeling needs to consider not only the past movement of pedestrians, the interaction between different pedestrians, the constraints of static obstacles in the scene, but also multi-modal of the human trajectory, which brings challenges to pedestrian trajectory prediction. Most of the existing trajectory prediction methods only consider the interaction between pedestrians in the scene, ignoring the static obstacles in the scene can also have impacts on the trajectory of pedestrian. In this paper, a scalable relative interactive spatial-temporal graph generation adversarial network architecture (RISTG-GAN) is proposed to generate a reasonable multi-modal prediction trajectory by considering the interaction effects of all agents in the scene. Our method extends recent work on trajectory prediction. First, LSTM nodes are flexibly used to model the spatial-temporal graph of human-environment interactions, and the spatial-temporal graph is converted into feed-forward differentiable feature coding, and the time attention module is proposed to capture the trajectory information in time domain and learn the time dependence in long time range. Then, we capture the relative importance of the interaction of all agents in the scene on the pedestrian trajectory through the improved relative scaled dot product attention and use the generative adversarial network architecture for training to generate reasonable pedestrian future trajectory distribution. Experiments on five commonly used real public datasets show that RISTG-GAN is better than previous work in terms of reasoning speed, accuracy and the rationality of trajectory prediction.
引用
收藏
页码:88707 / 88718
页数:12
相关论文
共 50 条
  • [21] Spatial-Temporal Traffic Prediction With an Interactive Spatial-Enhanced Graph Convolutional Network Model
    Li, Qin
    Xu, Pai
    Yang, Xuan
    Wu, Yuankai
    He, Hongwen
    He, Deqiang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2024, : 20767 - 20778
  • [22] Pedestrian Fall Detection Based on Improved Spatial-Temporal Graph Convolutional Network
    Lin, Yuanqiang
    Gao, Hui
    Wang, Peng
    Lv, Zhigang
    Li, Xiaoyan
    Wang, Chu
    2023 9th International Conference on Mechanical and Electronics Engineering, ICMEE 2023, 2023, : 455 - 459
  • [23] ST CrossingPose: A Spatial-Temporal Graph Convolutional Network for Skeleton-Based Pedestrian Crossing Intention Prediction
    Zhang, Xingchen
    Angeloudis, Panagiotis
    Demiris, Yiannis
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 20773 - 20782
  • [24] Spatio-Temporal Interaction Aware and Trajectory Distribution Aware Graph Convolution Network for Pedestrian Multimodal Trajectory Prediction
    Wang, Ruiping
    Song, Xiao
    Hu, Zhijian
    Cui, Yong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [25] Spatial-Temporal Graph Neural Network For Interaction-Aware Vehicle Trajectory Prediction
    Chen, Junan
    Wang, Yan
    Wu, Ruihan
    Campbell, Mark
    2021 IEEE 17TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2021, : 2119 - 2125
  • [26] Traffic Agents Trajectory Prediction Based on Spatial-Temporal Interaction Attention
    Xie, Jincan
    Li, Shuang
    Liu, Chunsheng
    SENSORS, 2023, 23 (18)
  • [27] STIGCN: spatial–temporal interaction-aware graph convolution network for pedestrian trajectory prediction
    Wangxing Chen
    Haifeng Sang
    Jinyu Wang
    Zishan Zhao
    The Journal of Supercomputing, 2024, 80 : 10695 - 10719
  • [28] A Study on the Dynamic Spatial-temporal Trajectory Features of Pedestrian Small Group
    Li, Xiaohong
    Xiong, Shengwu
    Duan, Pengfei
    Zheng, Senwen
    Li, Bixiang
    Liu, Mianfang
    2015 2ND INTERNATIONAL SYMPOSIUM ON DEPENDABLE COMPUTING AND INTERNET OF THINGS (DCIT), 2015, : 112 - 116
  • [29] Fault Prediction for Electromechanical Equipment Based on Spatial-Temporal Graph Information
    Zhang, Xiaofei
    Long, Zhuo
    Peng, Jian
    Wu, Gongping
    Hu, Haifeng
    Lyu, MingCheng
    Qin, Guojun
    Song, Dianyi
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1413 - 1424
  • [30] A Spatial-Temporal Attention Model for Human Trajectory Prediction
    Xiaodong Zhao
    Yaran Chen
    Jin Guo
    Dongbin Zhao
    IEEE/CAAJournalofAutomaticaSinica, 2020, 7 (04) : 965 - 974