Exploring low-temperature processed multifunctional HEPES-Au NSs-modified SnO2 for efficient planar perovskite solar cells

被引:16
|
作者
Fan, Lin [1 ,2 ]
Wang, Pengfei [1 ]
Wang, Mingyue [1 ]
Lu, Wanhong [1 ]
Wang, Fengyou [1 ,2 ]
Liu, Huilian [1 ,2 ]
Yang, Jinghai [1 ,2 ]
Yang, Lili [1 ,2 ]
机构
[1] Jilin Normal Univ, Minist Educ, Key Lab Funct Mat Phys & Chem, Changchun 130103, Peoples R China
[2] Jilin Normal Univ, Natl Demonstrat Ctr Expt Phys Educ, Siping 136000, Peoples R China
关键词
N-i-p planar heterojunction perovskite solar  cells; Electron-transporting layers; Plasmonic nanostructures; Interface modification; Charge transport dynamics; ELECTRON TRANSPORTING LAYER; TIN OXIDE; PERFORMANCE; FILMS;
D O I
10.1016/j.cej.2021.131832
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the development of high-efficiency n-i-p planar heterojunction perovskite solar cells (PSCs), the development of dense electron-transporting layers (ETLs) with excellent electrical properties and hetero-interface quality is very important for promoting perovskite growth and carrier transport dynamics. Herein, we propose a simple and effective strategy to simultaneously improve the electronic properties and interface quality of a tin oxide (SnO2) ETL by introducing 2-hydroxyethyl modified gold nanostars (HEPES-Au NSs) into a commercial SnO2 colloidal dispersion in order to synthesize mixed ETLs at low temperatures (<= 150 celcius). Based on the unique plasmonic structure of the HEPES-Au NSs, we demonstrate that the modified ETLs exhibit higher conductivity and greater efficiency in the extraction, transfer, and collection of photogenerated electrons than conventional SnO2 ETLs. Moreover, the chemical bond interaction between HEPES-Au NSs and the perovskite enhances the affinity of the SnO2/perovskite hetero-interface, which effectively improves the nucleation and crystallization kinetics of the perovskite, thus producing a high-quality absorber with high crystallinity and superior absorbance. Meanwhile, the 2-hydroxyethyl (HEPES) adsorbed onto the SnO2 surface effectively passivates perovskiterelated trap states, suppressing the non-radiative recombination and leakage current, and ultimately improving the relative electronic properties and photovoltaic performance output of the modified device. The results show that the power conversion efficiency (PCE) of the modified PSCs is significantly better than that of the original SnO2-based planar devices, and the optimal PCE reached 21.13%, with negligible hysteresis. Additionally, owing to the multifunctional effects of SnO2 modified by HEPES-Au NSs, the functionalized devices without encapsulation also demonstrate reliable reproducibility and good stability, which shows great advantages in the development of high-efficiency flexible PSCs and monolithic tandem devices.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Low-Temperature and Rapid Deposition of an SnO2 Layer from a Colloidal Nanoparticle Dispersion for Use in Planar Perovskite Solar Cells
    Shekargoftar, Masoud
    Pospisil, Jan
    Kratochvil, Matous
    Vida, Julius
    Soucek, Pavel
    Homola, Tomas
    ENERGY TECHNOLOGY, 2021, 9 (05)
  • [42] Multifunctional urea in modification of SnO2 interface for high efficiency planar perovskite solar cells
    Li, Shina
    Shi, Zhuonan
    Dong, Jiong
    Ma, Ruixin
    SURFACES AND INTERFACES, 2024, 46
  • [43] A low-temperature TiO2/SnO2 electron transport layer for high-performance planar perovskite solar cells
    Li, Nan
    Yan, Jin
    Ai, Yuqian
    Jiang, Ershuai
    Lin, Liujin
    Shou, Chunhui
    Yan, Baojie
    Sheng, Jiang
    Ye, Jichun
    SCIENCE CHINA-MATERIALS, 2020, 63 (02) : 207 - 215
  • [44] Polysaccharide-Modified SnO2 for Highly Efficient Perovskite Solar Cells
    He, Jingjing
    Xu, Xiaolei
    Dai, Yuanyuan
    Xue, Daxiang
    Zhang, Pengfei
    Niu, Qiang
    SOLAR RRL, 2024, 8 (11):
  • [45] Green low-temperature-solution-processed in situ HI modified TiO2/SnO2 bilayer for efficient and stable planar perovskite solar cells build at ambient air conditions
    Deng, Yaxin
    Li, Shuxian
    Li, Xuandong
    Wang, Rui
    Li, Xin
    ELECTROCHIMICA ACTA, 2019, 326
  • [46] Low-temperature, solution processed metal sulfide as an electron transport layer for efficient planar perovskite solar cells
    Liu, Jiang
    Gao, Cheng
    Luo, Lizhu
    Ye, Qinyan
    He, Xulin
    Ouyang, Liangqi
    Guo, Xiaowei
    Zhuang, Daming
    Liao, Cheng
    Mei, Jun
    Lau, Woonming
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (22) : 11750 - 11755
  • [47] Slow photocharging and reduced hysteresis in low-temperature processed planar perovskite solar cells
    Vaenas, Naoum
    Konios, Dimitrios
    Stergiopoulos, Thomas
    Kymakis, Emmanuel
    RSC ADVANCES, 2015, 5 (130) : 107771 - 107776
  • [48] Low Temperature Processed SnO2 Electron Transporting Layer from Tin Oxalate for Perovskite Solar Cells
    Cheng, Nian
    Yu, Zhen
    Li, Weiwei
    Lei, Bao
    Zi, Wei
    Xiao, Zhenyu
    Zhao, Zhiqiang
    Zong, Peng-An
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (12) : 15385 - 15391
  • [49] Optimization of SnO2 electron transport layer for efficient planar perovskite solar cells with very low hysteresis
    Eliwi, Abed Alrhman
    Malekshahi Byranvand, Mahdi
    Fassl, Paul
    Khan, Motiur Rahman
    Hossain, Ihteaz Muhaimeen
    Frericks, Markus
    Ternes, Simon
    Abzieher, Tobias
    Schwenzer, Jonas A.
    Mayer, Thomas
    Hofmann, Jan P.
    Richards, Bryce S.
    Lemmer, Uli
    Saliba, Michael
    Paetzold, Ulrich W.
    MATERIALS ADVANCES, 2022, 3 (01): : 456 - 466
  • [50] Water Vapor Treatment of Low-Temperature Deposited SnO2 Electron Selective Layers for Efficient Flexible Perovskite Solar Cells
    Wang, Changlei
    Guan, Lei
    Zhao, Dewei
    Yu, Yue
    Grice, Corey R.
    Song, Zhaoning
    Awni, Rasha A.
    Chen, Jing
    Wang, Jianbo
    Zhao, Xingzhong
    Yan, Yanfa
    ACS ENERGY LETTERS, 2017, 2 (09): : 2118 - 2124