Decay mild solutions for two-term time fractional differential equations in Banach spaces

被引:33
|
作者
Vu Trong Luong [1 ]
机构
[1] Tay Bac Univ, Dept Math, Sonla, Vietnam
关键词
Decay mild solution; fractional differential equation; nonlocal condition; measure of noncompactness; EXISTENCE; UNIQUENESS;
D O I
10.1007/s11784-016-0281-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we deal with the nonlocal Cauchy problem for a class of two-term time fractional differential equations in Banach spaces. By constructing a suitable measure of noncompactness on the space of solutions, we prove the existence of a compact set containing decay mild solutions to the mentioned problem.
引用
收藏
页码:417 / 432
页数:16
相关论文
共 50 条
  • [41] Solutions to the Cauchy problem for differential equations in Banach spaces with fractional order
    Lv, Zhi-Wei
    Liang, Jin
    Xiao, Ti-Jun
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1303 - 1311
  • [42] Periodic solutions of fractional degenerate differential equations with delay in Banach spaces
    Bu, Shangquan
    Cai, Gang
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 232 (02) : 695 - 717
  • [43] DECAY CHARACTERISTICS FOR DIFFERENTIAL EQUATIONS IN BANACH SPACES
    BUSENBER.SN
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A123 - A123
  • [44] Mild solutions for impulsive fractional differential inclusions with Hilfer derivative in Banach spaces
    Ibtissem Hammoumi
    Hadda Hammouche
    Abdelkrim Salim
    Mouffak Benchohra
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 637 - 650
  • [45] Mild solutions for impulsive fractional differential inclusions with Hilfer derivative in Banach spaces
    Hammoumi, Ibtissem
    Hammouche, Hadda
    Salim, Abdelkrim
    Benchohra, Mouffak
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (02) : 637 - 650
  • [46] On solutions of differential equations in Banach spaces
    Cichon, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (04) : 651 - 667
  • [47] On the Asymptotic of Solutions of Odd-Order Two-Term Differential Equations
    Sultanaev, Yaudat T.
    Valeev, Nur F.
    Nazirova, Elvira A.
    MATHEMATICS, 2024, 12 (02)
  • [48] IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES
    Benchohra, Mouffak
    Seba, Djamila
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2009,
  • [49] On Inhomogeneous Fractional Differential Equations in Banach Spaces
    Li, Kexue
    Peng, Jigen
    Gao, Jinghuai
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2013, 34 (04) : 415 - 429
  • [50] On the Asymptotic Behavior of Solutions to Two-Term Differential Equations with Singular Coefficients
    N. N. Konechnaya
    K. A. Mirzoev
    A. A. Shkalikov
    Mathematical Notes, 2018, 104 : 244 - 252