A chemical approach to perovskite solar cells: control of electron-transporting mesoporous TiO2 and utilization of nanocarbon materials

被引:24
|
作者
Umeyama, Tomokazu [1 ]
Imahori, Hiroshi [1 ,2 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Mol Engn, Nishikyo Ku, Kyoto 6158510, Japan
[2] Kyoto Univ, Inst Integrated Cell Mat Sci WPI iCeMS, Sakyo Ku, Kyoto 6068501, Japan
关键词
REDUCED GRAPHENE OXIDE; PHOTOINDUCED CHARGE SEPARATION; HIGH-PERFORMANCE; COUNTER ELECTRODES; CONVERSION EFFICIENCY; ENHANCED PERFORMANCE; CARBON NANOTUBES; RECENT PROGRESS; TIN OXIDE; FILMS;
D O I
10.1039/c7dt02421e
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Over the past several years, organometal halide perovskite solar cells (PSCs) have attracted considerable interest from the scientific research community because of their potential as promising photovoltaic devices for use in renewable energy production. To date, high power conversion efficiencies (PCEs) of more than 20% have been primarily achieved with mesoscopic-structured PSCs, where a mesoporous TiO2 (mTiO(2)) layer is incorporated as an electron-transporting mesoporous scaffold into the perovskite crystal, in addition to a compact TiO2 (cTiO(2)) as an electron-transporting layer (ETL). In this Perspective, we first summarize recent research on the preparation strategies of the mTiO(2) layer with a high electron transport capability by facile sol-gel methods instead of the conventional nanoparticle approach. The importance of the control of the pore size and grain boundaries of the mTiO(2) in achieving high PCEs for PSCs is discussed. In addition, an alternative method to improve the electron transport in the mTiO(2) layer via the incorporation of highly conductive nanocarbon materials, such as two-dimensional (2D) graphene and one-dimensional (1D) carbon nanotubes, is also summarized. Finally, we highlight the utilization of zero-dimensional (0D) nanocarbon, i.e., fullerenes, as an n-type semiconducting material in mesostructure-free planar PSCs, which avoids high-temperature sintering during the fabrication of an ETL.
引用
收藏
页码:15615 / 15627
页数:13
相关论文
共 50 条
  • [41] Modifying perovskite solar cells with l(+)-cysteine at the interface between mesoporous TiO2 and perovskite
    Wu, Pengfei
    Ma, Xiaotong
    Zhao, Baohua
    Liu, Chengben
    Chen, Yanli
    Yang, Guangwu
    Li, Xiyou
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (02) : 878 - 883
  • [42] Crystal recombination control by using Ce doped in mesoporous TiO2 for efficient perovskite solar cells
    Lu, Honglin
    Zhuang, Jia
    Ma, Zhu
    Zhou, Weiya
    Xia, Haoran
    Xiao, Zheng
    Zhang, Hua
    Li, Haimin
    RSC ADVANCES, 2019, 9 (02) : 1075 - 1083
  • [43] Unveiling the Effect of Potassium Treatment on the Mesoporous TiO2/ Perovskite Interface in Perovskite Solar Cells
    Amalathas, Amalraj Peter
    Landova, Lucie
    Ridzonova, Katarina
    Horak, Lukas
    Bauerova, Pavla
    Holovsky, Jakub
    ACS APPLIED ENERGY MATERIALS, 2021, 4 (10) : 11488 - 11495
  • [44] Improvement of current characteristic of perovskite solar cells using dodecanedioic acid modified TiO2 electron transporting layer
    Du Xiang
    Chen Si
    Lin Dong-Xu
    Xie Fang-Yan
    Chen Jian
    Xie Wei-Guang
    Liu Peng-Yi
    ACTA PHYSICA SINICA, 2018, 67 (09)
  • [45] Enhanced performance of planar perovskite solar cells using dip-coated TiO2 as electron transporting layer
    El Haimeur, A.
    Makha, M.
    Bakkali, H.
    Gonzalez-Leal, J. M.
    Blanco, E.
    Dominguez, M.
    Voitenko, Z. V.
    SOLAR ENERGY, 2020, 195 : 475 - 482
  • [46] Non-Fullerene Small Molecule Electron-Transporting Materials for Efficient p-i-n Perovskite Solar Cells
    Choi, Da-Seul
    Kwon, Sung-Nam
    Na, Seok-In
    NANOMATERIALS, 2020, 10 (06)
  • [47] Electron Transporting Bilayer of SnO2 and TiO2 Nanocolloid Enables Highly Efficient Planar Perovskite Solar Cells
    Hu, Manman
    Zhang, Luozheng
    She, Suyang
    Wu, Jianchang
    Zhou, Xianyong
    Li, Xiangnan
    Wang, Deng
    Miao, Jun
    Mi, Guojun
    Chen, Hong
    Tian, Yanqing
    Xu, Baomin
    Cheng, Chun
    SOLAR RRL, 2020, 4 (01)
  • [48] Nano-structured electron transporting materials for perovskite solar cells
    Liu, Hefei
    Huang, Ziru
    Wei, Shiyuan
    Zheng, Lingling
    Xiao, Lixin
    Gong, Qihuang
    NANOSCALE, 2016, 8 (12) : 6209 - 6221
  • [49] Exploring π-extended subporphyrinoids as electron transporting materials in perovskite solar cells
    Momblona, Cristina
    Labella, Jorge
    Gomez-Gomez, Marta
    Guzman, David
    Culik, Pavel
    Kanda, Hiroyuki
    Martinez-Diaz, M. Victoria
    Guldi, Dirk M.
    Nazeeruddin, Mohammad Khaja
    Torres, Tomas
    JOURNAL OF PORPHYRINS AND PHTHALOCYANINES, 2022, 26 (12) : 783 - 789
  • [50] N-doped anatase TiO2 as an efficient electron transport layer for mesoporous perovskite solar cells
    Yin, Guohua
    Liu, Gang
    Ke, Lili
    Rong, Mo
    Li, Hongxing
    APPLIED PHYSICS EXPRESS, 2021, 14 (07)