A chemical approach to perovskite solar cells: control of electron-transporting mesoporous TiO2 and utilization of nanocarbon materials

被引:24
|
作者
Umeyama, Tomokazu [1 ]
Imahori, Hiroshi [1 ,2 ]
机构
[1] Kyoto Univ, Grad Sch Engn, Dept Mol Engn, Nishikyo Ku, Kyoto 6158510, Japan
[2] Kyoto Univ, Inst Integrated Cell Mat Sci WPI iCeMS, Sakyo Ku, Kyoto 6068501, Japan
关键词
REDUCED GRAPHENE OXIDE; PHOTOINDUCED CHARGE SEPARATION; HIGH-PERFORMANCE; COUNTER ELECTRODES; CONVERSION EFFICIENCY; ENHANCED PERFORMANCE; CARBON NANOTUBES; RECENT PROGRESS; TIN OXIDE; FILMS;
D O I
10.1039/c7dt02421e
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Over the past several years, organometal halide perovskite solar cells (PSCs) have attracted considerable interest from the scientific research community because of their potential as promising photovoltaic devices for use in renewable energy production. To date, high power conversion efficiencies (PCEs) of more than 20% have been primarily achieved with mesoscopic-structured PSCs, where a mesoporous TiO2 (mTiO(2)) layer is incorporated as an electron-transporting mesoporous scaffold into the perovskite crystal, in addition to a compact TiO2 (cTiO(2)) as an electron-transporting layer (ETL). In this Perspective, we first summarize recent research on the preparation strategies of the mTiO(2) layer with a high electron transport capability by facile sol-gel methods instead of the conventional nanoparticle approach. The importance of the control of the pore size and grain boundaries of the mTiO(2) in achieving high PCEs for PSCs is discussed. In addition, an alternative method to improve the electron transport in the mTiO(2) layer via the incorporation of highly conductive nanocarbon materials, such as two-dimensional (2D) graphene and one-dimensional (1D) carbon nanotubes, is also summarized. Finally, we highlight the utilization of zero-dimensional (0D) nanocarbon, i.e., fullerenes, as an n-type semiconducting material in mesostructure-free planar PSCs, which avoids high-temperature sintering during the fabrication of an ETL.
引用
收藏
页码:15615 / 15627
页数:13
相关论文
共 50 条
  • [1] Laser Annealing of TiO2 Electron-Transporting Layer in Perovskite Solar Cells
    Wilkes, George C.
    Deng, Xiaoyu
    Choi, Joshua J.
    Gupta, Mool C.
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (48) : 41312 - 41317
  • [2] Perovskite Solar Cells with ZnO Electron-Transporting Materials
    Zhang, Peng
    Wu, Jiang
    Zhang, Ting
    Wang, Yafei
    Liu, Detao
    Chen, Hao
    Ji, Long
    Liu, Chunhua
    Ahmad, Waseem
    Chen, Zhi David
    Li, Shibin
    ADVANCED MATERIALS, 2018, 30 (03)
  • [3] Mesoporous SnO2 nanoparticle films as electron-transporting material in perovskite solar cells
    Li, Yi
    Zhu, Jun
    Huang, Yang
    Liu, Feng
    Lv, Mei
    Chen, Shuanghong
    Hu, Linhua
    Tang, Junwang
    Yao, Jianxi
    Dai, Songyuan
    RSC ADVANCES, 2015, 5 (36) : 28424 - 28429
  • [4] Co-Electrodeposition of Sn-Doped TiO2 Electron-Transporting Layer for Perovskite Solar Cells
    Su, Tzu-Sen
    Wei, Tzu-Chien
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2020, 217 (01):
  • [5] Gallium Cationic Incorporated Compact TiO2 as an Efficient Electron-Transporting Layer for Stable Perovskite Solar Cells
    Mali, Sawanta S.
    Patil, Jyoti, V
    Kim, Hyungjin
    Hong, Chang Kook
    MATTER, 2019, 1 (02) : 452 - 464
  • [6] Non-Fullerene Organic Electron-Transporting Materials for Perovskite Solar Cells
    Jung, Su-Kyo
    Lee, David S.
    Ann, Myung Hyun
    Im, Sang Hyuk
    Kim, Jong H.
    Kwon, O-Pil
    CHEMSUSCHEM, 2018, 11 (22) : 3882 - 3892
  • [7] Cube-like anatase TiO2 mesocrystals as effective electron-transporting materials toward high-performance perovskite solar cells
    Shen, Deli
    Lan, Tongbin
    Zhang, Houan
    Li, Weizhou
    Xiong, Peixun
    Li, Yafeng
    Wei, Mingdeng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 635 : 535 - 542
  • [8] TiO2Colloid-Spray Coated Electron-Transporting Layers for Efficient Perovskite Solar Cells
    Paik, Min Jae
    Lee, Yonghui
    Yun, Hyun-Sung
    Lee, Seung-Un
    Hong, Seung-Tack
    Seok, Sang Il
    ADVANCED ENERGY MATERIALS, 2020, 10 (39)
  • [9] Phthalocyanines and porphyrinoid analogues as hole- and electron-transporting materials for perovskite solar cells
    Urbani, Maxence
    de la Torre, Gema
    Nazeeruddin, Mohammad Khaja
    Torres, Tomas
    CHEMICAL SOCIETY REVIEWS, 2019, 48 (10) : 2738 - 2766
  • [10] Hole transporting materials for perovskite solar cells: a chemical approach
    Urieta-Mora, Javier
    Garcia-Benito, Ines
    Molina-Ontoria, Agustin
    Martin, Nazario
    CHEMICAL SOCIETY REVIEWS, 2018, 47 (23) : 8541 - 8571