A Two-Grid Binary Level Set Method for Eigenvalue Optimization
被引:6
|
作者:
Zhang, Jing
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R ChinaEast China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
Zhang, Jing
[1
]
Zhu, Shengfeng
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R ChinaEast China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
Zhu, Shengfeng
[1
]
Liu, Chunxiao
论文数: 0引用数: 0
h-index: 0
机构:
Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R ChinaEast China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
Liu, Chunxiao
[2
]
Shen, Xiaoqin
论文数: 0引用数: 0
h-index: 0
机构:
Xian Univ Technol, Sch Sci, Xian 710054, Peoples R ChinaEast China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
Shen, Xiaoqin
[3
]
机构:
[1] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
[2] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R China
[3] Xian Univ Technol, Sch Sci, Xian 710054, Peoples R China
Topology optimization;
Binary level set method;
Finite element method;
Two-grid;
Eigenvalue;
EIGENFREQUENCY;
MULTILEVEL;
VIBRATION;
SCHEME;
MODEL;
D O I:
10.1007/s10915-021-01662-1
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Two-grid methods are popular and efficient discretization techniques for solving nonlinear problems. In this paper, we propose a new two-grid binary level set method for eigenvalue optimization. An efficient yet effective two-grid finite element method is used to solve the nonlinear eigenvalue problem in two topology optimization models. By the binary level set method, the algorithm can perform topological and shape changes. Numerical examples are presented to illustrate the effectiveness and efficiency of the algorithm.
机构:
Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai, Peoples R ChinaShanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai, Peoples R China
Liu, Chunxiao
Hu, Xianliang
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Univ, Sch Math Sci, Hangzhou, Peoples R ChinaShanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai, Peoples R China
Hu, Xianliang
Zhu, Shengfeng
论文数: 0引用数: 0
h-index: 0
机构:
East China Normal Univ, Sch Math Sci, Shanghai, Peoples R China
East China Normal Univ, Shanghai Key Lab Pure Math & Math Practice, Shanghai, Peoples R ChinaShanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai, Peoples R China
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Weng, Zhifeng
Zhai, Shuying
论文数: 0引用数: 0
h-index: 0
机构:
Huaqiao Univ, Sch Math Sci, Quanzhou 362011, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
Zhai, Shuying
Feng, Xinlong
论文数: 0引用数: 0
h-index: 0
机构:
Xinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R ChinaXinjiang Univ, Coll Math & Syst Sci, Urumqi 830046, Peoples R China
机构:
Penn State Univ, Dept Math, Ctr Computat Math & Appl, University Pk, PA 16802 USAPenn State Univ, Dept Math, Ctr Computat Math & Appl, University Pk, PA 16802 USA
Xu, JC
Zhou, AH
论文数: 0引用数: 0
h-index: 0
机构:Penn State Univ, Dept Math, Ctr Computat Math & Appl, University Pk, PA 16802 USA
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USA
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USABeijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Guo, Hailong
Zhang, Zhimin
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Wayne State Univ, Dept Math, Detroit, MI 48202 USABeijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
Zhang, Zhimin
Zhao, Ren
论文数: 0引用数: 0
h-index: 0
机构:
Wayne State Univ, Dept Math, Detroit, MI 48202 USABeijing Computat Sci Res Ctr, Beijing 100193, Peoples R China