A Two-Grid Binary Level Set Method for Eigenvalue Optimization

被引:6
|
作者
Zhang, Jing [1 ]
Zhu, Shengfeng [1 ]
Liu, Chunxiao [2 ]
Shen, Xiaoqin [3 ]
机构
[1] East China Normal Univ, Sch Math Sci, Shanghai 200241, Peoples R China
[2] Shanghai Lixin Univ Accounting & Finance, Sch Stat & Math, Shanghai 201209, Peoples R China
[3] Xian Univ Technol, Sch Sci, Xian 710054, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Topology optimization; Binary level set method; Finite element method; Two-grid; Eigenvalue; EIGENFREQUENCY; MULTILEVEL; VIBRATION; SCHEME; MODEL;
D O I
10.1007/s10915-021-01662-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Two-grid methods are popular and efficient discretization techniques for solving nonlinear problems. In this paper, we propose a new two-grid binary level set method for eigenvalue optimization. An efficient yet effective two-grid finite element method is used to solve the nonlinear eigenvalue problem in two topology optimization models. By the binary level set method, the algorithm can perform topological and shape changes. Numerical examples are presented to illustrate the effectiveness and efficiency of the algorithm.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] A Two-Grid Binary Level Set Method for Eigenvalue Optimization
    Jing Zhang
    Shengfeng Zhu
    Chunxiao Liu
    Xiaoqin Shen
    Journal of Scientific Computing, 2021, 89
  • [2] A two-grid binary level set method for structural topology optimization
    Liu, Chunxiao
    Hu, Xianliang
    Zhu, Shengfeng
    ENGINEERING OPTIMIZATION, 2023, 55 (07) : 1100 - 1117
  • [3] ACCELERATION OF A TWO-GRID METHOD FOR EIGENVALUE PROBLEMS
    Hu, Xiaozhe
    Cheng, Xiaoliang
    MATHEMATICS OF COMPUTATION, 2011, 80 (275) : 1287 - 1301
  • [4] A two-grid method for level-set based topology optimization with GPU-acceleration
    Li, Yixin
    Zhou, Bangjian
    Hu, Xianliang
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
  • [5] An improved two-grid finite element method for the Steklov eigenvalue problem
    Weng, Zhifeng
    Zhai, Shuying
    Feng, Xinlong
    APPLIED MATHEMATICAL MODELLING, 2015, 39 (10-11) : 2962 - 2972
  • [6] A two-grid discretization scheme for eigenvalue problems
    Xu, JC
    Zhou, AH
    MATHEMATICS OF COMPUTATION, 2001, 70 (233) : 17 - 25
  • [7] INEXACT TWO-GRID METHODS FOR EIGENVALUE PROBLEMS
    Gu, Qun
    Gao, Weiguo
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (06) : 557 - 575
  • [8] TWO-GRID METHODS FOR MAXWELL EIGENVALUE PROBLEMS
    Zhou, J.
    Hu, X.
    Zhong, L.
    Shu, S.
    Chen, L.
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (04) : 2027 - 2047
  • [9] Superconvergent Two-Grid Methods for Elliptic Eigenvalue Problems
    Guo, Hailong
    Zhang, Zhimin
    Zhao, Ren
    JOURNAL OF SCIENTIFIC COMPUTING, 2017, 70 (01) : 125 - 148
  • [10] A two-grid discretization scheme for the Steklov eigenvalue problem
    Li Q.
    Yang Y.
    Journal of Applied Mathematics and Computing, 2011, 36 (1-2) : 129 - 139