Population-based ant colony optimisation for multi-objective function optimisation

被引:0
|
作者
Angus, Daniel [1 ]
机构
[1] Swinburne Univ Technol, Fac Informat & Commun Technol, Ctr Informat Technol Res, Complex Intelligent Syst Lab, Melbourne, Vic 3122, Australia
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ant inspired algorithms have recently gained popularity for use in multi-objective problem domains. The Population-based ACO, which uses a population of solutions as well as the traditional pheromone matrix, has been demonstrated as an effective problem solving strategy for solving combinatorial multi-objective optimisation problems, although this algorithm has yet to be applied to multi-objective function optimisation problems. This paper tests the suitability of a Population-based ACO algorithm for the multi-objective function optimisation problem. Results are given for a suite of problems of varying complexity.
引用
收藏
页码:232 / 244
页数:13
相关论文
共 50 条
  • [21] Biogeography-based optimisation with migration velocity for multi-objective optimisation problems
    Li, Wuzhao
    Mao, Yanfen
    Guo, Weian
    Wang, Lei
    Wu, Qidi
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2017, 10 (01) : 43 - 50
  • [22] Multi-objective optimisation of traffic signal control based on particle swarm optimisation
    Jian L.
    Jian, Li (litaann@163.com), 1600, Inderscience Publishers (11): : 547 - 553
  • [23] Multi-objective optimisation with stochastic algorithms and fuzzy definition of objective function
    Chiampi, M
    Fuerntratt, G
    Magele, C
    Ragusa, C
    Repetto, M
    INTERNATIONAL JOURNAL OF APPLIED ELECTROMAGNETICS AND MECHANICS, 1998, 9 (04) : 381 - 389
  • [24] Framework for minimising the impact of regional shocks on global food security using multi-objective ant colony optimisation
    Golding, Peter
    Kapadia, Sam
    Naylor, Stella
    Schulz, Jonathan
    Maier, Holger R.
    Lall, Upmanu
    van der Velde, Marijn
    ENVIRONMENTAL MODELLING & SOFTWARE, 2017, 95 : 303 - 319
  • [25] Route Optimisation by Ant Colony Optimisation Technique
    Ramtake, Dhammpal
    Kumar, Sanjay
    Patle, V. K.
    2ND INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, COMMUNICATION & CONVERGENCE, ICCC 2016, 2016, 92 : 48 - 55
  • [26] Hypervolume-Based DIRECT for Multi-Objective Optimisation
    Yin, Cheryl Wong Sze
    Al-Dujaili, Abdullah
    Suresh, S.
    PROCEEDINGS OF THE 2016 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'16 COMPANION), 2016, : 1201 - 1208
  • [27] Lens design as multi-objective optimisation
    Joseph, Shaine
    Kang, Hyung W.
    Chakraborty, Uday K.
    INTERNATIONAL JOURNAL OF AUTOMATION AND CONTROL, 2011, 5 (03) : 189 - 218
  • [28] Multi-Objective Evolutionary Beer Optimisation
    al-Rifaie, Mohammad Majid
    Cavazza, Marc
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 683 - 686
  • [29] Multi-objective satisfactory optimisation method
    Wang, P
    Huang, HH
    Zhang, X
    2004 IEEE CONFERENCE ON CYBERNETICS AND INTELLIGENT SYSTEMS, VOLS 1 AND 2, 2004, : 695 - 699
  • [30] Multi-Objective Optimisation of Metamaterial Antenna
    Capers, James R.
    Boyes, Stephen J.
    Hibbins, Alastair P.
    Horsley, Simon A. R.
    2023 17TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, EUCAP, 2023,