Population-based ant colony optimisation for multi-objective function optimisation

被引:0
|
作者
Angus, Daniel [1 ]
机构
[1] Swinburne Univ Technol, Fac Informat & Commun Technol, Ctr Informat Technol Res, Complex Intelligent Syst Lab, Melbourne, Vic 3122, Australia
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Ant inspired algorithms have recently gained popularity for use in multi-objective problem domains. The Population-based ACO, which uses a population of solutions as well as the traditional pheromone matrix, has been demonstrated as an effective problem solving strategy for solving combinatorial multi-objective optimisation problems, although this algorithm has yet to be applied to multi-objective function optimisation problems. This paper tests the suitability of a Population-based ACO algorithm for the multi-objective function optimisation problem. Results are given for a suite of problems of varying complexity.
引用
收藏
页码:232 / 244
页数:13
相关论文
共 50 条
  • [1] Crowding population-based ant colony optimisation for the multi-objective travelling salesman problem
    Angus, Daniel
    2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN MULTI-CRITERIA DECISION MAKING, 2007, : 333 - 340
  • [2] Multi-objective ant colony optimisation-based routing in WSNs
    Kellner, Ansgar
    Hogrefe, Dieter
    INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION, 2014, 6 (05) : 322 - 332
  • [3] An overview of population-based algorithms for multi-objective optimisation
    Giagkiozis, Ioannis
    Purshouse, Robin C.
    Fleming, Peter J.
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2015, 46 (09) : 1572 - 1599
  • [4] A multi-objective decomposition-based ant colony optimisation algorithm with negative pheromone
    Ning, Jiaxu
    Zhao, Qidong
    Sun, Peng
    Feng, Yunfei
    JOURNAL OF EXPERIMENTAL & THEORETICAL ARTIFICIAL INTELLIGENCE, 2021, 33 (05) : 827 - 845
  • [5] Population extremal optimisation for discrete multi-objective optimisation problems
    Randall, M.
    Lewis, A.
    INFORMATION SCIENCES, 2016, 367 : 390 - 402
  • [6] Multiple objective ant colony optimisation
    Angus D.
    Woodward C.
    Swarm Intelligence, 2009, 3 (1) : 69 - 85
  • [7] A dynamic configuration with a shared knowledge centre for multi-objective ant colony optimisation algorithms
    Rhazzaf M.
    Masrour T.
    International Journal of Intelligent Systems Technologies and Applications, 2020, 19 (06): : 541 - 554
  • [8] An artificial bee colony algorithm for multi-objective optimisation
    Luo, Jianping
    Liu, Qiqi
    Yang, Yun
    Li, Xia
    Chen, Min-rong
    Cao, Wenming
    APPLIED SOFT COMPUTING, 2017, 50 : 235 - 251
  • [9] Multi-objective optimisation
    Bortfeld, T.
    RADIOTHERAPY AND ONCOLOGY, 2007, 84 : S72 - S73
  • [10] Multi-objective ant colony optimisation: A meta-heuristic approach to supply chain design
    Moncayo-Martinez, Luis A.
    Zhang, David Z.
    INTERNATIONAL JOURNAL OF PRODUCTION ECONOMICS, 2011, 131 (01) : 407 - 420