On Extinction Phenomena for Parabolic Systems

被引:0
|
作者
Gramchev, T. [1 ]
Marras, M. [2 ]
Vernier-Piro, S. [1 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, Via Osped 72, I-09124 Cagliari, Italy
[2] Univ Cagliari, Dipartimento Matemat & Informat, I-09123 Cagliari, Italy
关键词
Parabolic systems; Uncoupled systems; Extinction time; REACTION-DIFFUSION PROBLEMS; NONLINEAR REACTION; DEAD CORES; EQUATION;
D O I
10.1007/978-1-4614-7333-6_51
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the extinction phenomena for some linear combinations of components of the vector-valued solutions to classes of semilinear parabolic systems. The crucial assumption on simultaneous splitting of the matrix-valued elliptic operators and the nonlinear source term allow us to uncouple the systems into a linear part and a scalar nonlinear equation depending on the solutions of the linear part. We propose necessary conditions and sufficient conditions on the existence of the extinction time for the solutions. We recapture as particular case previous results and apply our abstract theorem to a class of 3x3 systems appearing as models in chemical engineering.
引用
收藏
页码:561 / 570
页数:10
相关论文
共 50 条
  • [21] EXTINCTION FOR A QUASILINEAR PARABOLIC EQUATION WITH A NONLINEAR GRADIENT SOURCE
    Liu, Dengming
    Mu, Chunlai
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (05): : 1329 - 1343
  • [22] Extinction of Solutions of Parabolic Equations with Variable Anisotropic Nonlinearities
    Antontsev, S.
    Shmarev, S.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 261 (01) : 11 - 21
  • [23] Extinction of solutions in parabolic equations with different diffusion operators
    Liu, Bingchen
    Wang, Yuxi
    Wang, Lu
    APPLICABLE ANALYSIS, 2021, 100 (16) : 3600 - 3612
  • [24] Extinction of solutions of parabolic equations with variable anisotropic nonlinearities
    S. Antontsev
    S. Shmarev
    Proceedings of the Steklov Institute of Mathematics, 2008, 261 : 11 - 21
  • [25] Extinction and Positivity for a Doubly Nonlinear Degenerate Parabolic Equation
    Hong Jun Yuan
    Song Zhe Lian
    Chun Ling Cao
    Wen Jie Gao
    Xiao Jing Xu
    Acta Mathematica Sinica, English Series, 2007, 23 : 1751 - 1756
  • [26] Extinction for two parabolic stochastic PDE's on the lattice
    Mueller, C
    Perkins, E
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (03): : 301 - 338
  • [27] Approximate controlability of parabolic problems with explosion phenomena
    Diaz, JI
    Lions, JL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (02): : 173 - 177
  • [28] QUENCHING PHENOMENA FOR SINGULAR NONLINEAR PARABOLIC EQUATIONS
    CHAN, CY
    KWONG, MK
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (12) : 1377 - 1383
  • [29] HYPERBOLIC PHENOMENA IN A STRONGLY DEGENERATE PARABOLIC EQUATION
    BERTSCH, M
    DALPASSO, R
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 117 (04) : 349 - 387
  • [30] Approximation of degenerate parabolic systems by nondegenerate elliptic and parabolic systems
    Kacur, J
    Luckhaus, S
    APPLIED NUMERICAL MATHEMATICS, 1998, 26 (03) : 307 - 326