Mixing in ICF implosions on the National Ignition Facility caused by the fill-tube

被引:57
|
作者
Weber, C. R. [1 ]
Clark, D. S. [1 ]
Pak, A. [1 ]
Alfonso, N. [2 ]
Bachmann, B. [1 ]
Hopkins, L. F. Berzak [1 ]
Bunn, T. [1 ]
Crippen, J. [2 ]
Divol, L. [1 ]
Dittrich, T. [1 ]
Kritcher, A. L. [1 ]
Landen, O. L. [1 ]
Le Pape, S. [1 ,3 ]
MacPhee, A. G. [1 ]
Marley, E. [1 ]
Masse, L. P. [1 ]
Milovich, J. L. [1 ]
Nikroo, A. [1 ]
Patel, P. K. [1 ]
Pickworth, L. A. [1 ]
Rice, N. [2 ]
Smalyuk, V. A. [1 ]
Stadermann, M. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Gen Atom, San Diego, CA 92168 USA
[3] Sorbonne Univ, UPMC Univ Paris 06, Univ Paris Saclay, LULI,CNRS,Ecole Polytech,CEA, F-91128 Palaiseau, France
关键词
FABRICATION; TARGETS;
D O I
10.1063/1.5125599
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The micrometer-scale tube that fills capsules with thermonuclear fuel in inertial confinement fusion experiments at the National Ignition Facility is also one of the implosion's main degradation sources. It seeds a perturbation that injects the ablator material into the center, radiating away some of the hot-spot energy. This paper discusses how the perturbation arises in experiments using high-density carbon ablators and how the ablator mix interacts once it enters the hot-spot. Both modeling and experiments show an in-flight areal-density perturbation and localized x-ray emission at stagnation from the fill-tube. Simulations suggest that the fill-tube is degrading an otherwise 1D implosion by similar to 2x, but when other degradation sources are present, the yield reduction is closer to 20%. Characteristics of the fill-tube assembly, such as the through-hole size and the glue mass, alter the dynamics and magnitude of the degradation. These aspects point the way toward improvements in the design, some of which (smaller diameter fill-tube) have already shown improvements. Published under license by AIP Publishing.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Review of hydrodynamic instability experiments in inertially confined fusion implosions on National Ignition Facility
    Smalyuk, V. A.
    Weber, C. R.
    Landen, O. L.
    Ali, S.
    Bachmann, B.
    Celliers, P. M.
    Dewald, E. L.
    Fernandez, A.
    Hammel, B. A.
    Hall, G.
    MacPhee, A. G.
    Pickworth, L.
    Robey, H. F.
    Alfonso, N.
    Baker, K. L.
    Hopkins, L. F. Berzak
    Carlson, L.
    Casey, D. T.
    Clark, D. S.
    Crippen, J.
    Divol, L.
    Doppner, T.
    Edwards, M. J.
    Farrell, M.
    Felker, S.
    Field, J. E.
    Haan, S. W.
    Hamza, A., V
    Havre, M.
    Herrmann, M. C.
    Hsing, W. W.
    Khan, S.
    Kline, J.
    Kroll, J. J.
    LePape, S.
    Loomis, E.
    MacGowan, B. J.
    Martinez, D.
    Masse, L.
    Mauldin, M.
    Milovich, J. L.
    Moore, A. S.
    Nikroo, A.
    Pak, A.
    Patel, P. K.
    Peterson, J. L.
    Raman, K.
    Remington, B. A.
    Rice, N.
    Schoff, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2020, 62 (01)
  • [42] Beryllium capsule implosions at a case-to-capsule ratio of 3.7 on the National Ignition Facility
    Zylstra, A. B.
    Yi, S. A.
    MacLaren, S.
    Kline, J.
    Kyrala, G.
    Ralph, J. E.
    Bae, J.
    Batha, S.
    Callahan, D.
    Flippo, K.
    Huang, H.
    Hurricane, O.
    Khan, S. F.
    Kabadi, N.
    Kong, C.
    Kot, L. B.
    Lahmann, B.
    Loomis, E. N.
    Masse, L. P.
    Millot, M.
    Moore, A.
    Nikroo, A.
    Perry, T. S.
    Rice, N.
    Salmonson, J.
    Shah, R.
    Sio, H.
    Stadermann, M.
    Strozzi, D. J.
    Tipton, R.
    Xu, H.
    PHYSICS OF PLASMAS, 2018, 25 (10)
  • [43] Physics issues related to the confinement of ICF experiments in the US National Ignition Facility
    Tobin, M
    Anderson, A
    Latkowski, J
    Singh, M
    Marshall, C
    Bernat, T
    LASER INTERACTION AND RELATED PLASMA PHENOMENA, 1996, (369): : 200 - 206
  • [44] Neutron spectrometry-An essential tool for diagnosing implosions at the National Ignition Facility (invited)
    Johnson, M. Gatu
    Frenje, J. A.
    Casey, D. T.
    Li, C. K.
    Seguin, F. H.
    Petrasso, R.
    Ashabranner, R.
    Bionta, R. M.
    Bleuel, D. L.
    Bond, E. J.
    Caggiano, J. A.
    Carpenter, A.
    Cerjan, C. J.
    Clancy, T. J.
    Doeppner, T.
    Eckart, M. J.
    Edwards, M. J.
    Friedrich, S.
    Glenzer, S. H.
    Haan, S. W.
    Hartouni, E. P.
    Hatarik, R.
    Hatchett, S. P.
    Jones, O. S.
    Kyrala, G.
    Le Pape, S.
    Lerche, R. A.
    Landen, O. L.
    Ma, T.
    MacKinnon, A. J.
    McKernan, M. A.
    Moran, M. J.
    Moses, E.
    Munro, D. H.
    McNaney, J.
    Park, H. S.
    Ralph, J.
    Remington, B.
    Rygg, J. R.
    Sepke, S. M.
    Smalyuk, V.
    Spears, B.
    Springer, P. T.
    Yeamans, C. B.
    Farrell, M.
    Jasion, D.
    Kilkenny, J. D.
    Nikroo, A.
    Paguio, R.
    Knauer, J. P.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2012, 83 (10):
  • [45] Recent and planned hydrodynamic instability experiments on indirect-drive implosions on the National Ignition Facility
    Smalyuk, V. A.
    Weber, C. R.
    Landen, O. L.
    Ali, S.
    Bachmann, B.
    Celliers, P. M.
    Dewald, E.
    Fernandez, A.
    Hammel, B. A.
    Hall, G.
    MacPhee, A. G.
    Pickworth, L.
    Robey, H. F.
    Alfonso, N.
    Baker, K. L.
    Hopkins, L. F. Berzak
    Carlson, L.
    Casey, D. T.
    Clark, D. S.
    Crippen, J.
    Divol, L.
    Doppner, T.
    Edwards, J.
    Farrell, M.
    Felker, S.
    Field, J. E.
    Haan, S. W.
    Hamza, A., V
    Havre, M.
    Herrmann, M. C.
    Hsing, W. W.
    Khan, S.
    Kline, J.
    Kroll, J. J.
    LePape, S.
    Loomis, E.
    MacGowan, B. J.
    Martinez, D.
    Masse, L.
    Mauldin, M.
    Milovich, J. L.
    Moore, A. S.
    Nikroo, A.
    Pak, A.
    Patel, P. K.
    Peterson, J. L.
    Raman, K.
    Remington, B. A.
    Rice, N.
    Schoff, M.
    HIGH ENERGY DENSITY PHYSICS, 2020, 36
  • [46] Asymmetric directly driven capsule implosions: Modeling and experiments-A requirement for the National Ignition Facility
    Cobble, J. A.
    Murphy, T. J.
    Schmitt, M. J.
    Bradley, P. A.
    Krashenninikova, N. S.
    Obrey, K. A.
    Hsu, S. C.
    Tregillis, I. L.
    Magelssen, G. R.
    Wysocki, F. J.
    Batha, S. H.
    PHYSICS OF PLASMAS, 2012, 19 (12)
  • [47] X-ray continuum spectroscopy of inertial confinement fusion implosions at the National Ignition Facility
    Stoupin, S.
    Macphee, A. G.
    Kozioziemski, B.
    Macdonald, M. J.
    Ose, N.
    Heinmiller, J. M.
    Izumi, N.
    Rusby, D.
    Springer, P. T.
    Schneider, M. B.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2023, 94 (11):
  • [48] The effects of early time laser drive on hydrodynamic instability growth in National Ignition Facility implosions
    Peterson, J. L.
    Clark, D. S.
    Masse, L. P.
    Suter, L. J.
    PHYSICS OF PLASMAS, 2014, 21 (09)
  • [49] Note: Radiochemical measurement of fuel and ablator areal densities in cryogenic implosions at the National Ignition Facility
    Hagmann, C.
    Shaughnessy, D. A.
    Moody, K. J.
    Grant, P. M.
    Gharibyan, N.
    Gostic, J. M.
    Wooddy, P. T.
    Torretto, P. C.
    Bandong, B. B.
    Bionta, R.
    Cerjan, C. J.
    Bernstein, L. A.
    Caggiano, J. A.
    Herrmann, H. W.
    Knauer, J. P.
    Sayre, D. B.
    Schneider, D. H.
    Henry, E. A.
    Fortner, R. J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2015, 86 (07):
  • [50] Hydro-scaling of direct-drive cylindrical implosions at the OMEGA and the National Ignition Facility
    Palaniyappan, S.
    Sauppe, J. P.
    Tobias, B. J.
    Kawaguchi, C. F.
    Flippo, K. A.
    Zylstra, A. B.
    Landen, O. L.
    Shvarts, D.
    Malka, E.
    Batha, S. H.
    Bradley, P. A.
    Loomis, E. N.
    Vazirani, N. N.
    Kot, L.
    Schmidt, D. W.
    Day, T. H.
    Gonzales, R.
    Kline, J. L.
    PHYSICS OF PLASMAS, 2020, 27 (04)