Discrete stochastic integration in Riesz spaces

被引:19
|
作者
Labuschagne, Coenraad C. A. [2 ]
Watson, Bruce A. [1 ]
机构
[1] Univ Witwatersrand, Sch Math, ZA-2050 Po Wits, South Africa
[2] Univ Witwatersrand, Sch Computat & Appl Math, ZA-2050 Po Wits, South Africa
基金
新加坡国家研究基金会;
关键词
Martingale transform; Stochastic integral; Riesz space; f-Algebra; Universal completion; CONDITIONAL-EXPECTATION; MULTIPLICATION;
D O I
10.1007/s11117-010-0089-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this work we continue the developments of Kuo et al. (Indag Math 15:435-451, 2004; J Math Anal Appl 303:509-521, 2005) with the construction of the martingale transform or discrete stochastic integral in a Riesz space (measure-free) setting. The discrete stochastic integral is considered both in terms of a weighted sum of differences and via bilinear vector-valued forms. For this, analogues of the spaces L (2) and Mart(2) on Riesz spaces with a conditional expectation operator and a weak order unit are constructed using the f-algebra structure of the universal completion of the Riesz space and properties of the extension of the conditional expectation to its natural domain.
引用
收藏
页码:859 / 875
页数:17
相关论文
共 50 条