Multiple source clustering: A probabilistic reasoning approach

被引:2
|
作者
Leih, TJ
Harmse, J
Giannopoulos, E
机构
关键词
D O I
10.1109/ADFS.1996.581097
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we describe a versatile Multiple Source Clustering (MSC) algorithm. The algorithm uses a form of probabilistic reasoning known as Bayesian networks to solve the MSC problem of incomparable feature spaces. For time-tagged data, the algorithm uses fuzzy conjunctions to support cluster formation and management. Clustering performance measures are defined and a multiple target tracking/multiple sensor example is presented.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条
  • [21] A probabilistic relational approach for web document clustering
    Fersini, E.
    Messina, E.
    Archetti, F.
    INFORMATION PROCESSING & MANAGEMENT, 2010, 46 (02) : 117 - 130
  • [22] An Evolutionary Computing Approach to Probabilistic Reasoning on Bayesian Networks
    Rojas-Guzman, Carlos
    Kramer, Mark A.
    EVOLUTIONARY COMPUTATION, 1996, 4 (01) : 57 - 85
  • [23] A probabilistic reasoning approach for discovering web crawler sessions
    Stassopoulou, Athena
    Dikaiakos, Marios D.
    Advances in Data and Web Management, Proceedings, 2007, 4505 : 265 - 272
  • [24] Multiple machine learning modeling on near mid-air collisions: An approach towards probabilistic reasoning
    Haselein, Bruno Ziegler
    da Silva, Jonny Carlos
    Hooey, Becky L.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2024, 244
  • [25] A probabilistic model for clustering text documents with multiple fields
    Zhu, Shanfeng
    Takigawa, Ichigaku
    Zhang, Shuqin
    Mamitsuka, Hiroshi
    ADVANCES IN INFORMATION RETRIEVAL, 2007, 4425 : 331 - +
  • [26] Conditional Reasoning in Context: A Dual-Source Model of Probabilistic Inference
    Klauer, Karl Christoph
    Beller, Sieghard
    Huetter, Mandy
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION, 2010, 36 (02) : 298 - 323
  • [27] Source selection for analogical reasoning - An empirical approach
    Stubblefield, WA
    Luger, GF
    PROCEEDINGS OF THE THIRTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND THE EIGHTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE, VOLS 1 AND 2, 1996, : 696 - 702
  • [28] Semantic and geometric reasoning for robotic grasping: a probabilistic logic approach
    Antanas, Laura
    Moreno, Plinio
    Neumann, Marion
    de Figueiredo, Rui Pimentel
    Kersting, Kristian
    Santos-Victor, Jose
    De Raedt, Luc
    AUTONOMOUS ROBOTS, 2019, 43 (06) : 1393 - 1418
  • [29] Reasoning with Inconsistent Knowledge using the Epistemic Approach to Probabilistic Argumentation
    Hunter, Anthony
    KR2020: PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PRINCIPLES OF KNOWLEDGE REPRESENTATION AND REASONING, 2020, : 496 - 505
  • [30] Probabilistic Approach for Automated Reasoning for Lane Identification in Intelligent Vehicles
    Popescu, Voichita
    Bace, Mihai
    Nedevschi, Sergiu
    13TH INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND NUMERIC ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC 2011), 2012, : 255 - 258