Multiple source clustering: A probabilistic reasoning approach

被引:2
|
作者
Leih, TJ
Harmse, J
Giannopoulos, E
机构
关键词
D O I
10.1109/ADFS.1996.581097
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we describe a versatile Multiple Source Clustering (MSC) algorithm. The algorithm uses a form of probabilistic reasoning known as Bayesian networks to solve the MSC problem of incomparable feature spaces. For time-tagged data, the algorithm uses fuzzy conjunctions to support cluster formation and management. Clustering performance measures are defined and a multiple target tracking/multiple sensor example is presented.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 50 条