Enhancing Heat Capacity of Colloidal Suspension Using Nanoscale Encapsulated Phase-Change Materials for Heat Transfer

被引:93
|
作者
Hong, Yan [1 ,2 ]
Ding, Shujiang [1 ]
Wu, Wei
Hu, Jianjun [3 ]
Voevodin, Andrey A.
Gschwender, Lois
Snyder, Ed.
Chow, Louis [2 ]
Su, Ming [1 ,2 ]
机构
[1] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[2] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32826 USA
[3] USAF, Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
基金
美国国家科学基金会;
关键词
encapsulation; phase-change nanoparticles; heat transfer; colloid suspension; CORE-SHELL NANOPARTICLES; BIOMEDICAL APPLICATIONS; MAGNETIC NANOPARTICLES; BOTTOM-UP; PARTICLES; GOLD; CONVERSION; STORAGE; SILICA; FLUID;
D O I
10.1021/am100204b
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.
引用
收藏
页码:1685 / 1691
页数:7
相关论文
共 50 条
  • [1] Time periodic natural convection heat transfer in a nano-encapsulated phase-change suspension
    Hajjar, Ahmad
    Mehryan, S. A. M.
    Ghalambaz, Mohammad
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2020, 166
  • [2] Heat transfer analysis of encapsulated phase change materials
    Zhao, Weihuan
    Neti, Sudhakar
    Oztekin, Alparslan
    APPLIED THERMAL ENGINEERING, 2013, 50 (01) : 143 - 151
  • [3] MODELING PHASE-CHANGE MATERIALS HEAT CAPACITY USING ARTIFICIAL NEURAL NETWORKS
    Delcroix, B.
    Kummert, M.
    Daoud, A.
    HEAT TRANSFER RESEARCH, 2018, 49 (07) : 617 - 631
  • [4] SOLUTIONS FOR HEAT OR COLD DISCHARGE FROM ENCAPSULATED PHASE-CHANGE MATERIALS
    Vitorino, Nuno
    Abrantes, Joao C. C.
    Frade, Jorge R.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2013, 64 (06) : 421 - 435
  • [5] Theoretical Profile for Heat Capacity Peaks of Phase-Change Materials
    Medved, Igor
    Trnik, Anton
    THERMOPHYSICS 2018, 2018, 1988
  • [6] Fast nanoscale heat-flux modulation with phase-change materials
    van Zwol, P. J.
    Joulain, K.
    Ben Abdallah, P.
    Greffet, J. J.
    Chevrier, J.
    PHYSICAL REVIEW B, 2011, 83 (20)
  • [7] Enhancing nanoscale phase-change heat transfer by collaborative roles of surface functionalization and external electric field
    Liu, Wenxiang
    Xu, Yixin
    Li, Zhigang
    Duan, Fei
    Zhou, Yanguang
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 236
  • [8] Nanoengineered materials for liquid–vapour phase-change heat transfer
    H. Jeremy Cho
    Daniel J. Preston
    Yangying Zhu
    Evelyn N. Wang
    Nature Reviews Materials, 2
  • [9] HEAT TRANSFER ENHANCEMENT IN PHASE-CHANGE HEAT EXCHANGERS
    Chatys, Rafal
    Malcho, Milan
    Orman, Lukasz J.
    AVIATION, 2014, 18 (01) : 40 - 43
  • [10] Enhancement of phase-change heat transfer
    Bergles, AE
    CONVECTIVE FLOW AND POOL BOILING, 1999, : 23 - 31