Enhancing Heat Capacity of Colloidal Suspension Using Nanoscale Encapsulated Phase-Change Materials for Heat Transfer

被引:93
|
作者
Hong, Yan [1 ,2 ]
Ding, Shujiang [1 ]
Wu, Wei
Hu, Jianjun [3 ]
Voevodin, Andrey A.
Gschwender, Lois
Snyder, Ed.
Chow, Louis [2 ]
Su, Ming [1 ,2 ]
机构
[1] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[2] Univ Cent Florida, Dept Mech Mat & Aerosp Engn, Orlando, FL 32826 USA
[3] USAF, Res Lab, Mat & Mfg Directorate, Wright Patterson AFB, OH 45433 USA
基金
美国国家科学基金会;
关键词
encapsulation; phase-change nanoparticles; heat transfer; colloid suspension; CORE-SHELL NANOPARTICLES; BIOMEDICAL APPLICATIONS; MAGNETIC NANOPARTICLES; BOTTOM-UP; PARTICLES; GOLD; CONVERSION; STORAGE; SILICA; FLUID;
D O I
10.1021/am100204b
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.
引用
收藏
页码:1685 / 1691
页数:7
相关论文
共 50 条
  • [41] Phase-Change Heat Transfer Measurements Using Temperature-Sensitive Paints
    Al Hashimi, Husain
    Hammer, Caleb F.
    Lebon, Michel T.
    Zhang, Dan
    Kim, Jungho
    JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 2018, 140 (03):
  • [42] Improving heat transfer in a triplex tube heat exchanger containing phase-change materials by modifications of length and position of fins
    Hosseini, M. M.
    Rahimi, A. B.
    SCIENTIA IRANICA, 2020, 27 (01) : 239 - 251
  • [43] Convective heat transfer of nano-encapsulated phase change material suspension in a divergent minichannel heatsink
    Ho, C. J.
    Liu, Yen-Chung
    Yang, Tien-Fu
    Ghalambaz, Mohammad
    Yan, Wei-Mon
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 165
  • [44] Sensitivity analysis and design optimization of heat transfer with phase-change
    Gu, YX
    Zhou, YT
    Chen, BS
    Computational Mechanics, Proceedings, 2004, : 345 - 350
  • [45] Heat transfer characteristics of phase-change thermal control unit
    Du, Yanxia
    Xiao, Guangming
    Gui, Yewei
    He, Lixin
    Liu, Lei
    Huagong Xuebao/CIESC Journal, 2012, 63 (SUPPL.1): : 107 - 113
  • [46] TRANSIENT HEAT-TRANSFER IN A SILICA WINDOW WITH PHASE-CHANGE
    SU, MH
    SUTTON, WH
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 1994, 21 (05) : 683 - 694
  • [47] Enhanced Phase-Change Heat Transfer by Surface Wettability Control
    Zhou, Lei
    He, Wen
    Wang, Miao
    Hou, Xu
    CHEMSUSCHEM, 2022, 15 (06)
  • [48] Heat transfer in neuron composite laminated phase-change drywall
    Darkwa, K
    Kim, JS
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2004, 218 (A2) : 83 - 88
  • [49] Phase-change heat transfer analysis of shutdown overhead pipeline
    Xu Ying
    Nie Xin
    Cheng Qiglin
    Dai Zhonghua
    Liu Xiaoyan
    Liu Yang
    Cong, L., I
    CASE STUDIES IN THERMAL ENGINEERING, 2019, 13
  • [50] Phase-change heat transfer in micro-capillary grooves
    Zhao, YH
    Hu, XG
    Tsuruta, T
    Yamamoto, K
    JOURNAL OF ENHANCED HEAT TRANSFER, 2004, 11 (04) : 315 - 324