A Bifocal Measure of Expected Ambiguity in Bayesian Nonlinear Parameter Estimation

被引:3
|
作者
Winterfors, Emanuel [1 ,2 ]
Curtis, Andrew [2 ,3 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
[2] Univ Edinburgh, Grant Inst Earth Sci, Sch Geosci, Edinburgh EH9 3JW, Midlothian, Scotland
[3] ECOSSE Edinburgh Collaborat Subsurface Sci & Engn, Edinburgh, Midlothian, Scotland
关键词
Bayesian methods; Decision theory; Frequency estimation; Microseismic location; Nonlinear models; Optimal design; OPTIMAL-DESIGN;
D O I
10.1080/00401706.2012.676953
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a novel approach to define and calculate the expected uncertainty of Bayesian parameter estimates, prior to collecting any observational data. This can be used to design investigation techniques or experiments that minimize expected uncertainty. Our approach accounts fully for nonlinearity in the parameter observation relationship, which is neither the case for the Bayesian D- and A-optimality criteria most commonly used in experimental design, nor the case for most other derivative- or information matrix-based experimental design techniques. Our method is based on analyzing pairs of parameter estimates, thus forming a "bifocal" measure of ambiguity. Derivatives of observable data with respect to parameter values are neither required nor calculated. For linear models, our new measure is equivalent to expected posterior variance, and it is closely related to expected posterior variance in nonlinear models.
引用
收藏
页码:179 / 190
页数:12
相关论文
共 50 条
  • [31] Parameter estimation under ambiguity and contamination with the spurious model
    Gallegos, MT
    Ritter, G
    JOURNAL OF MULTIVARIATE ANALYSIS, 2006, 97 (05) : 1221 - 1250
  • [32] Nonlinear blind parameter estimation
    Lagrange, S.
    Jaulin, L.
    Vigneron, V.
    Jutten, C.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (03) : 834 - 838
  • [33] ALGORITHM FOR NONLINEAR PARAMETER ESTIMATION
    STEEN, NM
    BYRNE, GD
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (02): : A324 - A324
  • [34] Parameter Estimation with Expected and Residual-at-Risk Criteria
    Calafiore, Giuseppe
    Topcu, Ufuk
    El Ghaoui, Laurent
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 666 - 671
  • [35] Parameter estimation with expected and residual-at-risk criteria
    Calafiore, Giuseppe
    Topcu, Ufuk
    El Ghaoui, Laurent
    SYSTEMS & CONTROL LETTERS, 2009, 58 (01) : 39 - 46
  • [36] Robust Expected Information Gain for Optimal Bayesian Experimental Design Using Ambiguity Sets
    Go, Jinwoo
    Isaac, Tobin
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 180, 2022, 180 : 728 - 737
  • [37] A Quasi-Monte Carlo Approach to Bayesian Parameter Estimation for Nonlinear Dynamic Process Models
    Kashiwaya, Shigeru
    JOURNAL OF CHEMICAL ENGINEERING OF JAPAN, 2013, 46 (07) : 467 - 479
  • [38] Spectral method and Bayesian parameter estimation for the space fractional coupled nonlinear Schrödinger equations
    Hui Zhang
    Xiaoyun Jiang
    Nonlinear Dynamics, 2019, 95 : 1599 - 1614
  • [39] Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models
    Miguez, Joaquin
    Marino, Ines P.
    Vazquez, Manuel A.
    SIGNAL PROCESSING, 2018, 142 : 281 - 291
  • [40] A nonlinear population Monte Carlo scheme for Bayesian parameter estimation in a stochastic intercellular network model
    Miguez, Joaquin
    Marino, Ines P.
    2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 497 - 500