A Bifocal Measure of Expected Ambiguity in Bayesian Nonlinear Parameter Estimation

被引:3
|
作者
Winterfors, Emanuel [1 ,2 ]
Curtis, Andrew [2 ,3 ]
机构
[1] Univ Paris 06, Lab Jacques Louis Lions, F-75252 Paris 05, France
[2] Univ Edinburgh, Grant Inst Earth Sci, Sch Geosci, Edinburgh EH9 3JW, Midlothian, Scotland
[3] ECOSSE Edinburgh Collaborat Subsurface Sci & Engn, Edinburgh, Midlothian, Scotland
关键词
Bayesian methods; Decision theory; Frequency estimation; Microseismic location; Nonlinear models; Optimal design; OPTIMAL-DESIGN;
D O I
10.1080/00401706.2012.676953
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present a novel approach to define and calculate the expected uncertainty of Bayesian parameter estimates, prior to collecting any observational data. This can be used to design investigation techniques or experiments that minimize expected uncertainty. Our approach accounts fully for nonlinearity in the parameter observation relationship, which is neither the case for the Bayesian D- and A-optimality criteria most commonly used in experimental design, nor the case for most other derivative- or information matrix-based experimental design techniques. Our method is based on analyzing pairs of parameter estimates, thus forming a "bifocal" measure of ambiguity. Derivatives of observable data with respect to parameter values are neither required nor calculated. For linear models, our new measure is equivalent to expected posterior variance, and it is closely related to expected posterior variance in nonlinear models.
引用
收藏
页码:179 / 190
页数:12
相关论文
共 50 条
  • [1] Bayesian parameter estimation with informative priors for nonlinear systems
    Coleman, MC
    Block, DE
    AICHE JOURNAL, 2006, 52 (02) : 651 - 667
  • [2] Bayesian parameter estimation for nonlinear modelling of biological pathways
    Ghasemi, Omid
    Lindsey, Merry L.
    Yang, Tianyi
    Nguyen Nguyen
    Huang, Yufei
    Jin, Yu-Fang
    BMC SYSTEMS BIOLOGY, 2011, 5
  • [3] Parameter estimation: The ambiguity problem
    Lefkaditis, V
    Manikas, A
    PROCEEDINGS OF THE TENTH IEEE WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, 2000, : 387 - 390
  • [4] Bayesian Parameter Estimation for Nonlinear Dynamics Using Sensitivity Analysis
    Chou, Yi
    Sankaranarayanan, Sriram
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 5708 - 5714
  • [5] Bayesian Parameter Estimation
    Simoen, E.
    Lombaert, G.
    IDENTIFICATION METHODS FOR STRUCTURAL HEALTH MONITORING, 2016, 567 : 89 - 115
  • [6] Optimal nonlinear dynamic sparse model selection and Bayesian parameter estimation for nonlinear systems
    Adeyemo, Samuel
    Bhattacharyya, Debangsu
    COMPUTERS & CHEMICAL ENGINEERING, 2024, 180
  • [7] A Bayesian approach to parameter estimation and pooling in nonlinear flood event models
    Cmw. Sci. and Indust. Res. Org., Math. and Information Sciences, Wembley, WA, Australia
    不详
    不详
    不详
    不详
    Water Resour. Res., 1 (211-220):
  • [8] Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems
    Bisaillon, Philippe
    Sandhu, Rimple
    Khalil, Mohammad
    Pettit, Chris
    Poirel, Dominique
    Sarkar, Abhijit
    NONLINEAR DYNAMICS, 2015, 82 (03) : 1061 - 1080
  • [9] Bayesian parameter estimation and model selection for strongly nonlinear dynamical systems
    Philippe Bisaillon
    Rimple Sandhu
    Mohammad Khalil
    Chris Pettit
    Dominique Poirel
    Abhijit Sarkar
    Nonlinear Dynamics, 2015, 82 : 1061 - 1080
  • [10] Bayesian Parameter Estimation of Nonlinear Differential Equations Using Automatic Differentiation
    Park, Damdae
    Park, Seongeon
    Kim, Jung Hun
    Lee, Jong Min
    2018 18TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS), 2018,