Stability of a combined finite element - finite volume discretization of convection-diffusion equations

被引:8
|
作者
Deuring, Paul [1 ]
Mildner, Marcus
机构
[1] LMPA, ULCO, F-62228 Calais, France
关键词
barycentric finite volumes; combined finite element - finite volume method; convection-diffusion equation; Crouzeix-Raviart finite elements; stability; upwind method; DISCONTINUOUS GALERKIN METHOD; DOMINATED PROBLEMS; CONVERGENCE;
D O I
10.1002/num.20624
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a time-dependent and a stationary convection-diffusion equation. These equations are approximated by a combined finite element finite volume method: the diffusion term is discretized by Crouzeix-Raviart piecewise linear finite elements on a triangular grid, and the convection term by upwind barycentric finite volumes. In the nonstationary case, we use an implicit Euler approach for time discretization. This scheme is shown to be L2-stable uniformly with respect to the diffusion coefficient. In addition, it turns out that stability is unconditional in the time-dependent case. These results hold if the underlying grid satisfies a condition that is fulfilled, for example, by some structured meshes. (c) 2012 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 28: 402424, 2012
引用
收藏
页码:402 / 424
页数:23
相关论文
共 50 条
  • [31] STABILITY AND ERROR-ESTIMATES OF GALERKIN FINITE-ELEMENT APPROXIMATIONS FOR CONVECTION-DIFFUSION EQUATIONS
    AXELSSON, O
    IMA JOURNAL OF NUMERICAL ANALYSIS, 1981, 1 (03) : 329 - 345
  • [32] Stability analysis of convection-diffusion equations of different finite-element spaces at discrete times
    Akuamoah, Saviour W.
    Seadawy, Aly R.
    Lu, Dianchen
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2019, 33 (28):
  • [34] Finite element methods for multicomponent convection-diffusion
    Aznaran, Francis R. A.
    Farrell, Patrick E.
    Monroe, Charles W.
    Van-Brunt, Alexander J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024,
  • [35] Finite volume methods for convection-diffusion problems
    Lazarov, RD
    Mishev, ID
    Vassilevski, PS
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) : 31 - 55
  • [36] Performance of LCD iterative method in the finite element and finite difference solution of convection-diffusion equations
    Catabriga, L.
    Valli, A. M. P.
    Melotti, B. Z.
    Pessoa, L. M.
    Coutinho, A. L. G. A.
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 2006, 22 (06): : 643 - 656
  • [37] Finite element methods for multicomponent convection-diffusion
    Aznaran, Francis R. A.
    Farrell, Patrick E.
    Monroe, Charles W.
    Van-Brunt, Alexander J.
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2024, 45 (01) : 188 - 222
  • [38] Two-grid methods for characteristic finite volume element solution of semilinear convection-diffusion equations
    Chen, Chuanjun
    Bi, Chunjia
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (05) : 1896 - 1906
  • [39] A symmetric characteristic finite volume element scheme for nonlinear convection-diffusion problems
    Min Yang
    Yi-rang Yuan
    Acta Mathematicae Applicatae Sinica, English Series, 2008, 24 : 41 - 54