Optimized 3D co-registration of ultra-low-field and high-field magnetic resonance images

被引:9
|
作者
Guidotti, Roberto [1 ,2 ]
Sinibaldi, Raffaele [1 ,2 ]
De Luca, Cinzia [1 ,2 ]
Conti, Allegra [1 ,2 ]
Ilmoniemi, Risto J. [3 ]
Zevenhoven, Koos C. J. [3 ]
Magnelind, Per E. [4 ]
Pizzella, Vittorio [1 ,2 ]
Del Gratta, Cosimo [1 ,2 ]
Romani, Gian Luca [1 ,2 ]
Della Penna, Stefania [1 ,2 ,5 ]
机构
[1] Dept Neurosci Imaging & Clin Sci, Chieti, Italy
[2] Univ G DAnnunzio Chieti & Pescara, Inst Adv Biomed Technol, Chieti, Italy
[3] Aalto Univ, Sch Sci, Dept Neurosci & Biomed Engn, Aalto, Finland
[4] Los Alamos Natl Lab, Phys Div MS D454, Appl Modern Phys Grp, Los Alamos, NM USA
[5] Univ Chieti Pescara G DAnnunzio, UOS Aquila, Sede Lavoro CNR SPIN, Ist SPIN,Consiglio Nazl Ric, Chieti, Italy
来源
PLOS ONE | 2018年 / 13卷 / 03期
关键词
MICROTESLA MRI; HUMAN BRAIN; MAGNETOENCEPHALOGRAPHY; ROBUST;
D O I
10.1371/journal.pone.0193890
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The prototypes of ultra-low-field (ULF) MRI scanners developed in recent years represent new, innovative, cost-effective and safer systems, which are suitable to be integrated in multi-modal (Magnetoencephalography and MRI) devices. Integrated ULF-MRI and MEG scanners could represent an ideal solution to obtain functional (MEG) and anatomical (ULF MRI) information in the same environment, without errors that may limit source reconstruction accuracy. However, the low resolution and signal-to-noise ratio (SNR) of ULF images, as well as their limited coverage, do not generally allow for the construction of an accurate individual volume conductor model suitable for MEG localization. Thus, for practical usage, a high-field (HF) MRI image is also acquired, and the HF-MRI images are co-registered to the ULF-MRI ones. We address here this issue through an optimized pipeline (SWIM-Sliding WIndow grouping supporting Mutual information). The co-registration is performed by an affine transformation, the parameters of which are estimated using Normalized Mutual Information as the cost function, and Adaptive Simulated Annealing as the minimization algorithm. The sub-voxel resolution of the ULF images is handled by a sliding-window approach applying multiple grouping strategies to down-sample HF MRI to the ULF-MRI resolution. The pipeline has been tested on phantom and real data from different ULF-MRI devices, and comparison with well-known toolboxes for fMRI analysis has been performed. Our pipeline always outperformed the fMRI toolboxes (FSL and SPM). The HF-ULF MRI co-registration obtained by means of our pipeline could lead to an effective integration of ULF MRI with MEG, with the aim of improving localization accuracy, but also to help exploit ULF MRI in tumor imaging.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] SQUID-based systems for co-registration of ultra-low field nuclear magnetic resonance images and magnetoencephalography
    Matlashov, A. N.
    Burmistrov, E.
    Magnelind, P. E.
    Schultz, L.
    Urbaitis, A. V.
    Volegov, P. L.
    Yoder, J.
    Espy, M. A.
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2012, 482 : 19 - 26
  • [2] Denoise ultra-low-field 3D magnetic resonance images using a joint signal-image domain filter
    Zhang, Yuxiang
    He, Wei
    Chen, Fangge
    Wu, Jiamin
    He, Yucheng
    Xu, Zheng
    JOURNAL OF MAGNETIC RESONANCE, 2022, 344
  • [3] Unshielded SQUID Sensors for Ultra-Low-Field Magnetic Resonance Imaging
    Luomahaara, Juho
    Kiviranta, Mikko
    Gronberg, Leif
    Zevenhoven, Koos C. J.
    Laine, Petteri
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2018, 28 (04)
  • [4] Comparison of high-field and low-field magnetic resonance images of cadaver limbs of horses
    Murray, R. C.
    Mair, T. S.
    Sherlock, C. E.
    Blunden, A. S.
    VETERINARY RECORD, 2009, 165 (10) : 281 - 288
  • [5] Ultra-low-field magnetic resonance angiography at 0.05 T: A preliminary study
    Su, Shi
    Hu, Jiahao
    Ding, Ye
    Zhang, Junhao
    Lau, Vick
    Zhao, Yujiao
    Wu, Ed X.
    NMR IN BIOMEDICINE, 2024, 37 (11)
  • [6] Ultra High-Field Magnetic Resonance Imaging of a Glaucoma Microstent
    Allemann, Reto
    Langner, Soenke
    Witt, Martin
    Schmidt, Wolfram
    Schmitz, Klaus-Peter
    Hosten, Norbert
    Guthoff, Rudolf
    Stachs, Oliver
    CURRENT EYE RESEARCH, 2011, 36 (08) : 719 - 726
  • [7] Design of a Quadrature Receive Coil for Ultra-Low-Field Knee Magnetic Resonance Imaging
    Wan C.
    He W.
    Shen S.
    Xu Z.
    Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2024, 39 (07): : 1923 - 1931
  • [8] ULTRA-LOW-FIELD MAGNETIC-RESONANCE-IMAGING OF ACUTE CRUCIATE LIGAMENT TEARS
    EKELUND, L
    BJORNEBRINK, J
    ELMQVIST, LG
    MAGNETIC RESONANCE IMAGING, 1991, 9 (02) : 179 - 185
  • [9] Portable ultra-low-field magnetic resonance imaging enables postictal seizure imaging
    Bauer, Tobias
    Sabir, Hemmen
    Baumgartner, Tobias
    Racz, Attila
    Pukropski, Jan
    Badr, Mostafa
    Olbrich, Simon
    Lange, Annalena
    Bisten, Justus
    Groteklaes, Anne
    Lehnen, Nils C.
    Cendes, Fernando
    Radbruch, Alexander
    Surges, Rainer
    Rueber, Theodor
    EPILEPSIA, 2025,
  • [10] Ultra-low-field MRI using superconductive magnetic sensors
    Kanazawa Institute of Technology, Applied Electronics Laboratory, Kanazawa-shi, Japan
    J. Inst. Electron. Inf. Commun. Eng., 1 (40-47):