Interior penalty discontinuous Galerkin method for Maxwell's equations:: optimal L2-norm error estimates

被引:35
|
作者
Grote, Marcus J. [2 ]
Schneebeli, Anna [2 ]
Schoetzau, Dominik [1 ]
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T IZ2, Canada
[2] Univ Basel, Dept Math, CH-4051 Basel, Switzerland
基金
加拿大自然科学与工程研究理事会;
关键词
Maxwell's equations; discontinuous Galerkin methods; a priori error estimates;
D O I
10.1093/imanum/drm038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the symmetric, interior penalty discontinuous Galerkin ( DG) method for the time-dependent Maxwell's equations in second-order form. In Grote et al. ( 2007, J. Comput. Appl. Math., 204, 375 386), optimal a priori estimates in the DG energy norm were derived, either for smooth solutions on arbitrary meshes or for low-regularity ( singular) solutions on conforming, affine meshes. Here, we show that the DG methods are also optimally convergent in the L-2-norm, on tetrahedral meshes and for smooth material coefficients. The theoretical convergence rates are validated by a series of numerical experiments in two-space dimensions, which also illustrate the usefulness of the interior penalty DG method for time-dependent computational electromagnetics.
引用
收藏
页码:440 / 468
页数:29
相关论文
共 50 条
  • [41] A priori error estimates of a discontinuous Galerkin method for the Navier-Stokes equations
    Saumya Bajpai
    Deepjyoti Goswami
    Kallol Ray
    Numerical Algorithms, 2023, 94 : 937 - 1002
  • [42] A priori error estimates of a discontinuous Galerkin method for the Navier-Stokes equations
    Bajpai, Saumya
    Goswami, Deepjyoti
    Ray, Kallol
    NUMERICAL ALGORITHMS, 2023, 94 (02) : 937 - 1002
  • [43] OPTIMAL ERROR ESTIMATES OF THE SEMIDISCRETE CENTRAL DISCONTINUOUS GALERKIN METHODS FOR LINEAR HYPERBOLIC EQUATIONS
    Liu, Yong
    Shu, Chi-Wang
    Zhang, Mengping
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (01) : 520 - 541
  • [44] An inexact l2-norm penalty method for cardinality constrained portfolio optimization
    Jiang, Tao
    Wang, Shuo
    Zhang, Ruochen
    Qin, Lang
    Wu, Jinglian
    Wang, Delin
    Ahipasaoglu, Selin D.
    ENGINEERING ECONOMIST, 2019, 64 (03): : 289 - 297
  • [45] A-priori and a-posteriori error estimates for discontinuous Galerkin method of the Maxwell eigenvalue problem
    Zhang, Jun
    Luo, Zijiang
    Han, Jiayu
    Chen, Hu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 176 : 190 - 201
  • [46] Galerkin spectral approximation of optimal control problems with L2-norm control constraint
    Lin, Xiuxiu
    Chen, Yanping
    Huang, Yunqing
    APPLIED NUMERICAL MATHEMATICS, 2020, 150 : 418 - 432
  • [47] Numerical error analysis for nonsymmetric interior penalty discontinuous Galerkin method of Cahn-Hilliard equation
    Liu, Chen
    Frank, Florian
    Riviere, Beatrice M.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (04) : 1509 - 1537
  • [48] Optimal error estimates of spectral Galerkin method for mixed diffusion equations
    Hao, Zhaopeng
    CALCOLO, 2023, 60 (01)
  • [49] Optimal error estimates of spectral Galerkin method for mixed diffusion equations
    Zhaopeng Hao
    Calcolo, 2023, 60
  • [50] TEMPORAL CONVERGENCE OF A LOCALLY IMPLICIT DISCONTINUOUS GALERKIN METHOD FOR MAXWELL'S EQUATIONS
    Moya, Ludovic
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (05): : 1225 - 1246