Confidence Intervals for Quantiles of a Two-parameter Exponential Distribution under Progressive Type-II Censoring

被引:9
|
作者
Balakrishnan, N. [1 ,2 ]
Hayter, A. J. [3 ]
Liu, W. [4 ,5 ]
Kiatsupaibul, S. [6 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
[2] King Abdulaziz Univ, Dept Stat, Jeddah 21413, Saudi Arabia
[3] Univ Denver, Dept Business Informat & Analyt, Denver, CO 80208 USA
[4] Univ Southampton, S3RI, Southampton, Hants, England
[5] Univ Southampton, Sch Maths, Southampton, Hants, England
[6] Chulalongkorn Univ, Dept Stat, Bangkok, Thailand
关键词
Confidence intervals; Exponential distribution; Quantiles; Progressive Type II censoring; Type II censoring; Acceptance sets; RELIABILITY;
D O I
10.1080/03610926.2013.813051
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Confidence intervals for the pth-quantile Q of a two-parameter exponential distribution provide useful information on the plausible range of Q, and only inefficient equal-tail confidence intervals have been discussed in the statistical literature so far. In this article, the construction of the shortest possible confidence interval within a family of two-sided confidence intervals is addressed. This shortest confidence interval is always shorter, and can be substantially shorter, than the corresponding equal-tail confidence interval. Furthermore, the computational intensity of both methodologies is similar, and therefore it is advantageous to use the shortest confidence interval. It is shown how the results provided in this paper can apply to data obtained from progressive Type II censoring, with standard Type II censoring as a special case. The applications of more complex confidence interval constructions through acceptance set inversions that can employ prior information are also discussed.
引用
收藏
页码:3001 / 3010
页数:10
相关论文
共 50 条
  • [31] Approximate MLE for the scaled generalized exponential distribution under progressive type-II censoring
    A. Asgharzadeh
    Journal of the Korean Statistical Society, 2009, 38 : 223 - 229
  • [32] ESTIMATION IN EXPONENTIAL POWER DISTRIBUTION UNDER PROGRESSIVE TYPE-II CENSORING WITH BINOMIAL REMOVALS
    Kishan, Ram
    Sangal, Prabhat Kumar
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2019, 15 (02): : 713 - 726
  • [33] Exact inference and prediction for K-sample two-parameter exponential case under general Type-II censoring
    Balakrishnan, N
    Lin, CT
    Chan, PS
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2004, 74 (12) : 867 - 878
  • [34] Interval estimation of the two-parameter exponential constant stress accelerated life test model under Type-II censoring
    Wu, Wenhui
    Wang, Bing Xing
    Chen, Jiayan
    Miao, Jiuzhou
    Guan, Qingyuan
    QUALITY TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2023, 20 (06): : 751 - 762
  • [35] Estimating the parameter of Exponential distribution under Type-II censoring from fuzzy data
    Nayereh Bagheri Khoolenjani
    Fateme Shahsanaie
    Journal of Statistical Theory and Applications, 2016, 15 (2): : 181 - 195
  • [36] Estimating the parameter of Exponential distribution under Type-II censoring from fuzzy data
    Khoolenjani, Nayereh Bagheri
    Shahsanaie, Fateme
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2016, 15 (02): : 181 - 195
  • [37] Inference for exponential mean parameter under progressive Type-II censoring from imprecise lifetime
    Pak, Abbas
    Chatrabgoun, Omid
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2016, 9 (01) : 227 - 245
  • [38] THE DOUBLE PRIOR SELECTION FOR THE PARAMETER OF INVERTED EXPONENTIAL DISTRIBUTION UNDER TYPE-II CENSORING
    Patel, Ronak M.
    Patel, Achyut C.
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2018, 14 (02): : 561 - 568
  • [39] Least-length confidence intervals for the parameters of a two-parameter exponential distribution
    Zolotukhina, LA
    INDUSTRIAL LABORATORY, 2000, 66 (11): : 757 - 760
  • [40] Parameter estimation of Chen distribution under improved adaptive type-II progressive censoring
    Zhang, Li
    Yan, Rongfang
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (13) : 2830 - 2861