Capturing of a magnetic skyrmion with a hole

被引:137
|
作者
Mueller, Jan [1 ]
Rosch, Achim [1 ]
机构
[1] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
来源
PHYSICAL REVIEW B | 2015年 / 91卷 / 05期
关键词
DYNAMICS; MOTION; FERROMAGNETS; LATTICE; MNSI;
D O I
10.1103/PhysRevB.91.054410
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Magnetic whirls in chiral magnets, so-called skyrmions, can be manipulated by ultrasmall current densities. Here we study both analytically and numerically the interactions of a single skyrmion in two dimensions with a small hole in the magnetic layer. Results from micromagnetic simulations are in good agreement with effective equations of motion obtained from a generalization of the Thiele approach. Skyrmion-defect interactions are described by an effective potential with both repulsive and attractive components. For small current densities a previously pinned skyrmion stays pinned whereas an unpinned skyrmion moves around the impurities and never gets captured. For higher current densities, j(c1) < j < j(c2), however, single holes are able to capture moving skyrmions. The maximal cross section is proportional to the skyrmion radius and to root alpha, where a is the Gilbert damping. For j > j(c2) all skyrmions are depinned. Small changes of the magnetic field strongly change the pinning properties; one can even reach a regime without pinning, j (c2) = 0. We also show that a small density of holes can effectively accelerate the motion of the skyrmion and introduce a Hall effect for the skyrmion.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Quantum collapse of a magnetic skyrmion
    Derras-Chouk, Amel
    Chudnovsky, Eugene M.
    Garanin, Dmitry A.
    PHYSICAL REVIEW B, 2018, 98 (02)
  • [22] Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack
    Xichao Zhang
    Yan Zhou
    Motohiko Ezawa
    G. P. Zhao
    Weisheng Zhao
    Scientific Reports, 5
  • [23] Magnetic skyrmion transistor: skyrmion motion in a voltage-gated nanotrack
    Zhang, Xichao
    Zhou, Yan
    Ezawa, Motohiko
    Zhao, G. P.
    Zhao, Weisheng
    SCIENTIFIC REPORTS, 2015, 5
  • [24] Skyrmion bubbles stabilization in confined hole and trench materials
    Qin, Gang
    Wang, Ying
    Pei, Ke
    Zhang, Ruixuan
    Zhang, Chang
    Luo, Yongming
    Cao, Jiangwei
    Che, Renchao
    APPLIED PHYSICS LETTERS, 2020, 117 (05)
  • [25] Capturing black-hole pairs
    Jon M. Miller
    Nature, 2009, 458 : 40 - 41
  • [26] Quaternary memory based on magnetic skyrmion
    Zhang, S.
    Gan, W.
    Kerk, I.
    Kwon, J.
    Luo, F.
    Wang, J.
    Liu, Q.
    Lew, W.
    2015 IEEE MAGNETICS CONFERENCE (INTERMAG), 2015,
  • [27] Skyrmion dynamics and stability in magnetic nanowire
    Al Naabi, S.
    Sbiaa, R.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2022, 128 (12):
  • [28] Tailoring the topology of an artificial magnetic skyrmion
    Li, J.
    Tan, A.
    Moon, K. W.
    Doran, A.
    Marcus, M. A.
    Young, A. T.
    Arenholz, E.
    Ma, S.
    Yang, R. F.
    Hwang, C.
    Qiu, Z. Q.
    NATURE COMMUNICATIONS, 2014, 5
  • [29] Unwinding of a Skyrmion Lattice by Magnetic Monopoles
    Milde, P.
    Koehler, D.
    Seidel, J.
    Eng, L. M.
    Bauer, A.
    Chacon, A.
    Kindervater, J.
    Muehlbauer, S.
    Pfleiderer, C.
    Buhrandt, S.
    Schuette, C.
    Rosch, A.
    SCIENCE, 2013, 340 (6136) : 1076 - 1080
  • [30] Skyrmion morphology in ultrathin magnetic films
    Gross, I.
    Akhtar, W.
    Hrabec, A.
    Sampaio, J.
    Martinez, L. J.
    Chouaieb, S.
    Shields, B. J.
    Maletinsky, P.
    Thiaville, A.
    Rohart, S.
    Jacques, V.
    PHYSICAL REVIEW MATERIALS, 2018, 2 (02):