An investigation of noise performance in optical lock-in thermography

被引:9
|
作者
Rajic, Nik [1 ]
Antolis, Cedric [1 ]
机构
[1] Def Sci & Technol Grp, 506 Lorimer St, Fishermans Bend, Vic 3207, Australia
关键词
Lock-in thermography; Modulated thermography; Microbolometer; Non-destructive inspection; NONDESTRUCTIVE EVALUATION; INSPECTION;
D O I
10.1016/j.infrared.2017.09.019
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
An investigation into the noise performance of optical lock-in thermography (OLT) is described. The study aims to clarify the influence of infrared detector type and key inspection parameters such as illumination strength and lock-in duration on the quality of OLT amplitude and phase imagery. The study compares the performance of a state-of-the-art cooled photon detector with several lower-cost microbolometers. The results reveal a significant noise performance advantage to the photon detector. Under certain inspection regimes the advantage with respect to phase image quality is disproportionately high relative to detector sensitivities. This is shown to result from an explicit dependence in the phase signal variance on the ratio between the signal amplitude and the detector sensitivity. While this finding supports the preferred use of photon detectors for OLT inspections, it does not exclude microbolometers from a useful role. In cases where the significantly lower capital cost and improved practicality of microbolometers provide an advantage it is shown that performance shortfalls can be overcome with a relatively small factorial increase in optical illumination intensity. Crown Copyright (C) 2017 Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [31] Measurement of the Peltier coefficient of semiconductors by lock-in thermography
    Straube, Hilmar
    Wagner, Jan-Martin
    Breitenstein, Otwin
    APPLIED PHYSICS LETTERS, 2009, 95 (05)
  • [32] Characterization of layered materials using lock-in thermography
    Wu, D
    Busse, G
    9TH INTERNATIONAL CONFERENCE ON PHOTOACOUSTIC AND PHOTOTHERMAL PHENOMENA, CONFERENCE DIGEST, 1996, : 81 - 82
  • [33] Nondestructive inspection of turbine blades with lock-in thermography
    Wu, D
    Zenzinger, G
    Karpen, W
    Busse, G
    NONDESTRUCTIVE CHARACTERIZATION OF MATERIALS VII, PTS 1 AND 2, 1996, 210-2 : 289 - 294
  • [34] Investigation of dimensional and heat source effects in Lock-In Thermography applications in semiconductor packages
    Kijkanjanapaiboon, Kasemsak
    Xie, Mayue
    Zhou, Jiang
    Fan, Xuejun
    APPLIED THERMAL ENGINEERING, 2017, 113 : 673 - 683
  • [35] From photothermal radiometry to lock-in thermography methods
    Busse, Gerd
    15TH INTERNATIONAL CONFERENCE ON PHOTOACOUSTIC AND PHOTOTHERMAL PHENOMENA (ICPPP15), 2010, 214
  • [36] Thermal diffusivity of metals determined by lock-in thermography
    Nolte, P. W.
    Malvisalo, T.
    Wagner, F.
    Schweizer, S.
    QUANTITATIVE INFRARED THERMOGRAPHY JOURNAL, 2017, 14 (02) : 218 - 225
  • [37] Advances in Crack Characterization by Lock-In Infrared Thermography
    R. Celorrio
    A. J. Omella
    A. Mendioroz
    A. Oleaga
    A. Salazar
    International Journal of Thermophysics, 2015, 36 : 1202 - 1207
  • [38] Thermophysical analysis of thin films by lock-in thermography
    Wolf, A. (wolf@zae.uni-erlangen.de), 1600, American Institute of Physics Inc. (96):
  • [39] Infrared lock-in thermography through glass substrates
    Straube, H.
    Breitenstein, O.
    SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (10) : 2768 - 2771
  • [40] Defect depth quantification using lock-in thermography
    Delanthabettu, Sharath
    Menaka, Murugesan
    Venkatraman, Balasubramanian
    Raj, Baldev
    QUANTITATIVE INFRARED THERMOGRAPHY JOURNAL, 2015, 12 (01) : 37 - 52