C1,α regularity for the normalized p-Poisson problem

被引:35
|
作者
Attouchi, Amal [1 ]
Parviainen, Mikko [1 ]
Ruosteenoja, Eero [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2017年 / 108卷 / 04期
基金
芬兰科学院;
关键词
Normalized p-Laplacian; p-Poisson problem; Viscosity solutions; Local C-1; C-alpha regularity; TUG-OF-WAR; VISCOSITY SOLUTIONS; WEAK SOLUTIONS; EQUIVALENCE; LAPLACIAN; EQUATION; PROOF;
D O I
10.1016/j.matpur.2017.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the normalized p-Poisson problem Delta(N)(p)u = f in Omega subset of R-n. The normalized p -Laplacian Delta(N)(p)u := vertical bar Du vertical bar(2-P)Delta(p)u is in non -divergence form and arises for example from stochastic games. We prove C-loc(1-alpha) regularity with nearly optimal alpha for viscosity solutions of this problem. In the case f is an element of L-infinity boolean AND C and p > 1 we use methods both from viscosity and weak theory, whereas in the case f is an element of L-q boolean AND C, q > max(n, E/2, 2), and p > 2 we rely on the tools of nonlinear potential theory. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:553 / 591
页数:39
相关论文
共 50 条
  • [41] C1,α-REGULARITY FOR VARIATIONAL PROBLEMS IN THE HEISENBERG GROUP
    Mukherjee, Shirsho
    Zhong, Xiao
    ANALYSIS & PDE, 2021, 14 (02): : 567 - 594
  • [42] The Penrose singularity theorem in regularity C1,1
    Kunzinger, Michael
    Steinbauer, Roland
    Vickers, James A.
    CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (15)
  • [43] The C1,1 regularity of the pluricomplex Green function
    Blocki, Z
    MICHIGAN MATHEMATICAL JOURNAL, 2000, 47 (02) : 211 - 215
  • [44] C1,α-PARTIAL REGULARITY FOR NONLINEAR ELLIPTIC SYSTEMS
    谭忠
    ActaMathematicaScientia, 1995, (03) : 254 - 263
  • [45] On C1 ,α Regularity for Monge- Ampre Equation
    胡云姣
    保继光
    NortheasternMathematicalJournal, 2000, (01) : 46 - 50
  • [47] Tangent cones and C1 regularity of definable sets
    Kurdyka, Krzysztof
    Le Gal, Olivier
    Nguyen Xuan Viet Nhan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 457 (01) : 978 - 990
  • [48] Global C1,α regularity and existence of multiple solutions for singular p(x)-Laplacian equations
    Byun, Sun-Sig
    Ko, Eunkyung
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2017, 56 (03)
  • [49] On the solutions to p-Poisson equation with Robin boundary conditions when p goes to plus ∞
    Amato, Vincenzo
    Masiello, Alba Lia
    Nitsch, Carlo
    Trombetti, Cristina
    ADVANCES IN NONLINEAR ANALYSIS, 2022, 11 (01) : 1631 - 1649
  • [50] Regularity of C1 smooth surfaces with prescribed p-mean curvature in the Heisenberg group
    Jih-Hsin Cheng
    Jenn-Fang Hwang
    Paul Yang
    Mathematische Annalen, 2009, 344