C1,α regularity for the normalized p-Poisson problem

被引:35
|
作者
Attouchi, Amal [1 ]
Parviainen, Mikko [1 ]
Ruosteenoja, Eero [1 ]
机构
[1] Univ Jyvaskyla, Dept Math & Stat, POB 35, Jyvaskyla 40014, Finland
来源
基金
芬兰科学院;
关键词
Normalized p-Laplacian; p-Poisson problem; Viscosity solutions; Local C-1; C-alpha regularity; TUG-OF-WAR; VISCOSITY SOLUTIONS; WEAK SOLUTIONS; EQUIVALENCE; LAPLACIAN; EQUATION; PROOF;
D O I
10.1016/j.matpur.2017.05.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the normalized p-Poisson problem Delta(N)(p)u = f in Omega subset of R-n. The normalized p -Laplacian Delta(N)(p)u := vertical bar Du vertical bar(2-P)Delta(p)u is in non -divergence form and arises for example from stochastic games. We prove C-loc(1-alpha) regularity with nearly optimal alpha for viscosity solutions of this problem. In the case f is an element of L-infinity boolean AND C and p > 1 we use methods both from viscosity and weak theory, whereas in the case f is an element of L-q boolean AND C, q > max(n, E/2, 2), and p > 2 we rely on the tools of nonlinear potential theory. (C) 2017 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:553 / 591
页数:39
相关论文
共 50 条
  • [1] On the lack of interior regularity of the p-Poisson problem with p > 2
    Weimar, Markus
    MATHEMATISCHE NACHRICHTEN, 2021, 294 (06) : 1186 - 1205
  • [2] Regularity of the p-Poisson equation in the plane
    Lindgren, Erik
    Lindqvist, Peter
    JOURNAL D ANALYSE MATHEMATIQUE, 2017, 132 : 217 - 228
  • [3] Improved regularity for the p-Poisson equation
    Pimentel, Edgard A.
    Rampasso, Giane C.
    Santos, Makson S.
    NONLINEARITY, 2020, 33 (06) : 3050 - 3061
  • [4] Regularity of the p-Poisson equation in the plane
    Erik Lindgren
    Peter Lindqvist
    Journal d'Analyse Mathématique, 2017, 132 : 217 - 228
  • [5] Besov regularity of solutions to the p-Poisson equation
    Dahlke, Stephan
    Diening, Lars
    Hartmann, Christoph
    Scharf, Benjamin
    Weimar, Markus
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 130 : 298 - 329
  • [6] A Relaxed Kaanov iteration for the p-poisson problem
    Diening, L.
    Fornasier, M.
    Tomasi, R.
    Wank, M.
    NUMERISCHE MATHEMATIK, 2020, 145 (01) : 1 - 34
  • [7] A note on the optimal boundary regularity for the planar generalized p-Poisson
    Haque, Saikatul
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 175 : 133 - 156
  • [8] A Relaxed Kačanov iteration for the p-poisson problem
    L. Diening
    M. Fornasier
    R. Tomasi
    M. Wank
    Numerische Mathematik, 2020, 145 : 1 - 34
  • [9] A C1 REGULARITY RESULT FOR THE INHOMOGENEOUS NORMALIZED INFINITY LAPLACIAN
    Crasta, Graziano
    Fragala, Ilaria
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (06) : 2547 - 2558
  • [10] Besov Regularity of Solutions to the p-Poisson Equation in the Vicinity of a Vertex of a Polygonal Domain
    Christoph Hartmann
    Markus Weimar
    Results in Mathematics, 2018, 73