A Posteriori Error Analysis for the Weak Galerkin Method for Solving Elliptic Problems

被引:16
|
作者
Zhang, Tie [1 ]
Chen, Yanli [1 ]
机构
[1] Northeastern Univ, Dept Math, Shenyang 110004, Liaoning, Peoples R China
关键词
Weak Galerkin method; a posteriori error estimate; error upper bound and lower bound; second-order elliptic problem; FINITE-ELEMENT-METHOD; DIFFUSION-PROBLEMS; DISCONTINUOUS GALERKIN;
D O I
10.1142/S0219876218500755
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we study the a posteriori error estimate for weak Galerkin finite element method solving elliptic problems. A residual type error estimator is proposed and is proven to be reliable and efficient. This estimator provides global upper and lower bounds on the exact error in a discrete H-1-norm. Numerical experiments are given to illustrate the effectiveness of the proposed error estimator.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] The Weak Galerkin Method for Elliptic Eigenvalue Problems
    Zhai, Qilong
    Xie, Hehu
    Zhang, Ran
    Zhang, Zhimin
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2019, 26 (01) : 160 - 191
  • [22] A POSTERIORI ERROR ANALYSIS OF EULER-GALERKIN APPROXIMATIONS TO COUPLED ELLIPTIC-PARABOLIC PROBLEMS
    Ern, Alexandre
    Meunier, Sebastien
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02): : 353 - 375
  • [23] A Posteriori Error Estimates of Edge Residual-Type of Weak Galerkin Mixed FEM Solving Second-Order Elliptic Problems on Polytopal Mesh
    Wang, Huijuan
    Xu, Shipeng
    He, Xiaoxiao
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2022, 19 (05)
  • [24] A POSTERIORI ERROR ESTIMATES FOR A MODIFIED WEAK GALERKIN FINITE ELEMENT APPROXIMATION OF SECOND ORDER ELLIPTIC PROBLEMS WITH DG NORM
    Zeng, Yuping
    Wang, Feng
    Weng, Zhifeng
    Hu, Hanzhang
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2021, 39 (05): : 807 - 828
  • [25] An a priori error analysis of the local discontinuous Galerkin method for elliptic problems
    Castillo, P
    Cockburn, B
    Perugia, I
    Shötzau, D
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 38 (05) : 1676 - 1706
  • [26] An immersed weak Galerkin method for elliptic interface problems
    Mu, Lin
    Zhang, Xu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 362 : 471 - 483
  • [27] A posteriori error estimates of the weak Galerkin finite element methods for parabolic problems
    Dai, Jiajia
    Chen, Luoping
    Yang, Miao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 445
  • [28] A posteriori error analysis of a quadratic finite volume method for nonlinear elliptic problems
    Zhang, Yuanyuan
    Liu, Xiaoping
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2022, 38 (01) : 48 - 64
  • [29] Error estimates for a discontinuous galerkin method for elliptic problems
    Lee M.A.
    Shin J.Y.
    Journal of Applied Mathematics and Computing, 2006, 21 (1-2) : 189 - 201
  • [30] Optimal error bound for immersed weak Galerkin finite element method for elliptic interface problems
    Gharibi, Zeinab
    Dehghan, Mehdi
    Abbaszadeh, Mostafa
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 416