Comparison of the Main Magnetic Resonance Imaging Acceleration Strategies Based on Parallel Imaging Techniques

被引:0
|
作者
Fabregat, J. A. [1 ]
Moratal, D. [2 ]
Bonmati, L. M. [3 ]
Brummer, M. E. [4 ]
机构
[1] Vossloh Espana, Unidad ID & Nuevos Prod, Valencia, Spain
[2] Univ Politecn Valencia, Dept Ingn Elect, E-46071 Valencia, Spain
[3] Hosp Univ Dr Peset Valencia, Secc Radiol Resonancia Magnet, Valencia, Spain
[4] Emory Univ, Sch Med, Atlanta, GA USA
关键词
acceleration techniques; GRAPPA; magnetic resonance imaging; parallel imaging; PILS; SENSE; SMASH; SPACE-RIP; MULTIPLE DETECTORS; DATA ACQUISITION; FAST MRI; RECONSTRUCTION; SENSE; SMASH; ARRAY; COILS;
D O I
10.1109/TLA.2011.5876415
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main parallel imaging techniques have been implemented under MATLAB (SENSE, PILS and SPACE-RIP for image domain, and SMASH and GRAPPA for k-space domain), evaluating its characteristics about image quality and signal to noise ratio. PILS and SMASH, with an specific coil configuration, provided the best results. SENSE and SPACE-RIP were more versatile with any coil configuration. All methods arrived to its acceleration factor theoretical limit (R=4 for 4 coils) with images without noise. Only those methods that depend on a inversion of the reconstruction matrix (SENSE and SPACE-RIP) did not arrive to the theoretical limit for noisy images due to its instability problems. PILS provided the best results although SENSE and SPACE-RIP can be applied under more general conditions. For the k-space domain methods, SMASH gave the best results under a specific coil array configuration.
引用
收藏
页码:749 / 758
页数:10
相关论文
共 50 条
  • [31] A brief review of parallel magnetic resonance imaging
    Robin M. Heidemann
    Özkan Özsarlak
    Paul M. Parizel
    Johan Michiels
    Berthold Kiefer
    Vladimir Jellus
    Mathias Müller
    Felix Breuer
    Martin Blaimer
    Mark A. Griswold
    Peter M. Jakob
    European Radiology, 2003, 13 : 2323 - 2337
  • [32] Derivative encoding for parallel magnetic resonance imaging
    Shen, Jun
    MEDICAL PHYSICS, 2011, 38 (10) : 5582 - 5589
  • [33] A generalized approach to parallel magnetic resonance imaging
    Sodickson, DK
    McKenzie, CA
    MEDICAL PHYSICS, 2001, 28 (08) : 1629 - 1643
  • [34] Compressed Sensing Parallel Magnetic Resonance Imaging
    Ji, Jim X.
    Zhao, Chen
    Lang, Tao
    2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8, 2008, : 1671 - 1674
  • [35] A brief review of parallel magnetic resonance imaging
    Heidemann, RM
    Özsarlak, Ö
    Parizel, PM
    Michiels, J
    Kiefer, B
    Jellus, V
    Müller, M
    Breuer, F
    Blaimer, M
    Griswold, MA
    Jakob, PM
    EUROPEAN RADIOLOGY, 2003, 13 (10) : 2323 - 2337
  • [36] Optimal sampling in parallel magnetic resonance imaging
    Aggarwal, N
    Bresler, Y
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 2, PROCEEDINGS, 2003, : 839 - 842
  • [37] Impedance magnetic resonance imaging: a method for imaging of impedance distributions based on magnetic resonance imaging
    Ueno, S.
    Iriguchi, N.
    Journal of Applied Physics, 1998, 83 (11 pt 2):
  • [38] Impedance magnetic resonance imaging: A method for imaging of impedance distributions based on magnetic resonance imaging
    Ueno, S
    Iriguchi, N
    JOURNAL OF APPLIED PHYSICS, 1998, 83 (11) : 6450 - 6452
  • [39] High Acceleration with a Rotating Radiofrequency Coil Array (RRFCA) in Parallel Magnetic Resonance Imaging (MRI)
    Li, Mingyan
    Jin, Jin
    Trakic, Adnan
    Liu, Feng
    Weber, Ewald
    Li, Yu
    Crozier, Stuart
    2012 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2012, : 1098 - 1101
  • [40] Fast acceleration-encoded magnetic resonance imaging
    Forster, J
    Sieverding, L
    Breuer, J
    Lutz, O
    Schick, F
    MEDICAL PHYSICS, 2001, 28 (01) : 28 - 35