A symbiosis between cellular automata and genetic algorithms

被引:9
|
作者
Cerruti, Umberto [1 ]
Dutto, Simone [1 ]
Murru, Nadir [1 ]
机构
[1] Univ Torino, Dept Math G Peano, Turin, Italy
关键词
Cellular automata; Genetic algorithms; Game of life; Prisoner's dilemma; CONWAYS GAME;
D O I
10.1016/j.chaos.2020.109719
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Cellular automata are systems which use a rule to describe the evolution of a population in a discrete lattice, while genetic algorithms are procedures designed to find solutions to optimization problems inspired by the process of natural selection. In this paper, we introduce an original implementation of a cellular automaton whose rules use a fitness function to select for each cell the best mate to reproduce and a crossover operator to determine the resulting offspring. This new system, with a proper definition, can be both a cellular automaton and a genetic algorithm. We show that in our system the Conway's Game of Life can be easily implemented and, consequently, it is capable of universal computing. Moreover two generalizations of the Game of Life are created and also implemented with it. Finally, we use our system for studying and implementing the prisoner's dilemma and rock-paper-scissors games, showing very interesting behaviors and configurations (e.g., gliders) inside these games. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Modelling macroscopic phenomena with cellular automata and parallel genetic algorithms: An application to lava flows
    Avolio, Maria Vittoria
    D'Ambrosio, Donato
    Di Gregorio, Salvatore
    Rongo, Rocco
    Spataro, William
    Trunfio, Giuseppe A.
    COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 866 - +
  • [22] Modeling of recrystallization in cold rolled copper using inverse cellular automata and genetic algorithms
    Ghosh, Sudipto
    Gabane, Prashant
    Bose, Anindya
    Chakraborti, Nirupam
    COMPUTATIONAL MATERIALS SCIENCE, 2009, 45 (01) : 96 - 103
  • [23] Reconstruction of DNA sequences using genetic algorithms and cellular automata: Towards mutation prediction?
    Mizas, Ch.
    Sirakoulis, G. Ch.
    Mardiris, V.
    Karafyllidis, I.
    Glykos, N.
    Sandaltzopoulos, R.
    BIOSYSTEMS, 2008, 92 (01) : 61 - 68
  • [24] Algorithms for computing preimages of cellular automata configurations
    Jeras, Iztok
    Dobnikar, Andrej
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 233 (02) : 95 - 111
  • [25] Programming cellular automata algorithms on parallel computers
    Spezzano, G
    Talia, D
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF GRID COMPUTING AND ESCIENCE, 1999, 16 (2-3): : 203 - 216
  • [26] Evolutionary algorithms for designing reversible cellular automata
    Mariot, Luca
    Picek, Stjepan
    Jakobovic, Domagoj
    Leporati, Alberto
    GENETIC PROGRAMMING AND EVOLVABLE MACHINES, 2021, 22 (04) : 429 - 461
  • [27] Cellular Genetic Algorithms
    Lev, Benjamin
    INTERFACES, 2010, 40 (01) : 85 - 86
  • [28] Evolutionary algorithms for designing reversible cellular automata
    Luca Mariot
    Stjepan Picek
    Domagoj Jakobovic
    Alberto Leporati
    Genetic Programming and Evolvable Machines, 2021, 22 : 429 - 461
  • [29] On Randomness and the Genetic Behavior of Cellular Automata
    Toutounji, Hazem
    Aljundi, A. Chadi
    2008 3RD INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGIES: FROM THEORY TO APPLICATIONS, VOLS 1-5, 2008, : 1408 - 1413
  • [30] Genetic symbiosis algorithm generating test data for constraint automata
    Rezaee, Alireza
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2008, 7 (01) : 126 - 137