Changes in Extreme Climate Events in China Under 1.5°C-4°C Global Warming Targets: Projections Using an Ensemble of Regional Climate Model Simulations

被引:46
|
作者
Wu, Jia [1 ]
Han, Zhenyu [1 ]
Xu, Ying [1 ]
Zhou, Botao [1 ,2 ]
Gao, Xuejie [3 ,4 ]
机构
[1] China Meteorol Adm, Natl Climate Ctr, Beijing, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Minist Educ, Collaborat Innovat Ctr Forecast & Evaluat Meteorl, Key Lab Meteorol Disaster, Nanjing, Peoples R China
[3] Chinese Acad Sci, Inst Atmospher Phys, Climate Change Res Ctr, Beijing, Peoples R China
[4] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteoro, Nanjing, Peoples R China
基金
中国国家自然科学基金;
关键词
1.5; DEGREES-C; SUMMER PRECIPITATION CHANGES; HIGH-RESOLUTION; TEMPERATURE EXTREMES; MONSOON PRECIPITATION; AUSTRALIAN CLIMATE; EASTERN CHINA; PATTERNS; TRENDS; REGCM4;
D O I
10.1029/2019JD031057
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Extreme climate events in China, including its 10 main river basins, were projected under global warming of 1.5 degrees C-4 degrees C using the latest version of a regional climate model (RegCM4) for dynamical downscaling, driven by the outputs of four global climate models. Firstly, evaluation indicated that the simulations satisfactorily reproduced the spatial distribution of temperature extremes and, although with lower performance, the spatial distributions of precipitation extremes were generally captured. Additionally, a better description was achieved over areas with complex terrains by using RegCM4. Next, the model was used to make projections under global warming of 1.5 degrees C-4 degrees C. Warm extremes were projected to increase, while cold events were projected to decrease, particularly in northern and western China. In addition, the number of wet days was projected to increase in the northern part of China, and to decrease in the southern part. The maximum consecutive five-day precipitation and the precipitation intensity were projected to increase significantly throughout China, while the consecutive number of dry days was projected to significantly decrease in northern and western China. The changes of atmospheric moisture content and atmospheric circulation lead to the increase of extreme precipitation. Specifically, the increases in the indices of wetness were closely correlated with the summer precipitation, wind, moisture flux convergence, and surface specific humidity, while the consecutive number of dry days was related to the change in summer moisture flux convergence and precipitation in dry seasons. Notably, the magnitude of the changes in extremes events was projected to increase as the warming target increases.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Impacts of global warming of 1.5 °C and 2.0 °C on precipitation patterns in China by regional climate model (COSMO-CLM)
    Sun, Hemin
    Wang, Anqian
    Zhai, Jianqing
    Huang, Jinlong
    Wang, Yanjun
    Wen, Shanshan
    Zeng, Xiaofan
    Su, Buda
    ATMOSPHERIC RESEARCH, 2018, 203 : 83 - 94
  • [22] Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming
    Wang, Zhili
    Lin, Lei
    Zhang, Xiaoye
    Zhang, Hua
    Liu, Liangke
    Xu, Yangyang
    SCIENTIFIC REPORTS, 2017, 7
  • [23] Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming
    Zhili Wang
    Lei Lin
    Xiaoye Zhang
    Hua Zhang
    Liangke Liu
    Yangyang Xu
    Scientific Reports, 7
  • [24] Changes in temperature extremes over China under 1.5 °C and 2 °C global warming targets
    Shi Chen
    Jiang Zhi-Hong
    Chen Wei-Lin
    Li, Laurent
    ADVANCES IN CLIMATE CHANGE RESEARCH, 2018, 9 (02) : 120 - 129
  • [25] Will Half a Degree Make a Difference? Robust Projections of Indices of Mean and Extreme Climate in Europe Under 1.5°C, 2°C, and 3°C Global Warming
    Dosio, Alessandro
    Fischer, Erich M.
    GEOPHYSICAL RESEARCH LETTERS, 2018, 45 (02) : 935 - 944
  • [26] A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model
    Zhang, Yong
    Xu, Yinlong
    Dong, Wenjie
    Cao, Lijuan
    Sparrow, Michael
    GEOPHYSICAL RESEARCH LETTERS, 2006, 33 (24)
  • [27] Projections of changes in ecosystem productivity under 1.5 °C and 2 °C global warming
    Tian, Chenguang
    Yue, Xu
    Zhou, Hao
    Lei, Yadong
    Ma, Yimian
    Cao, Yang
    GLOBAL AND PLANETARY CHANGE, 2021, 205
  • [28] Climate Impacts in Europe Under+1.5°C Global Warming
    Jacob, Daniela
    Kotova, Lola
    Teichmann, Claas
    Sobolowski, Stefan P.
    Vautard, Robert
    Donnelly, Chantal
    Koutroulis, Aristeidis G.
    Grillakis, Manolis G.
    Tsanis, Ioannis K.
    Damm, Andrea
    Sakalli, Abdulla
    van Vliet, Michelle T. H.
    EARTHS FUTURE, 2018, 6 (02) : 264 - 285
  • [29] Drylands climate response to transient and stabilized 2°C and 1.5°C global warming targets
    Wei, Yun
    Yu, Haipeng
    Huang, Jianping
    Zhou, Tianjun
    Zhang, Meng
    Ren, Yu
    CLIMATE DYNAMICS, 2019, 53 (3-4) : 2375 - 2389
  • [30] Drylands climate response to transient and stabilized 2 °C and 1.5 °C global warming targets
    Yun Wei
    Haipeng Yu
    Jianping Huang
    Tianjun Zhou
    Meng Zhang
    Yu Ren
    Climate Dynamics, 2019, 53 : 2375 - 2389