共 50 条
Moire patterns arising from bilayer graphone/graphene superlattice
被引:18
|作者:
Li, Hu
[1
,2
]
Papadakis, Raffaello
[3
]
Hussain, Tanveer
[4
]
Karton, Amir
[4
]
Liu, Jiangwei
[1
]
机构:
[1] Shandong Univ, Key Lab High Efficiency & Clean Mech Manufacture, Sch Mech Engn, Jinan 250061, Peoples R China
[2] Univ Manchester, Sch Elect & Elect Engn, Manchester M13 9PL, Lancs, England
[3] Uppsala Univ, Dept Chem, Angstrom Lab, S-75121 Uppsala, Sweden
[4] Univ Western Australia, Sch Mol Sci, Perth, WA 6009, Australia
基金:
瑞典研究理事会;
中国国家自然科学基金;
关键词:
Moire patterns;
graphone;
graphene superlattice;
atomic force microscopy;
triangular pattern;
linear pattern;
INITIO MOLECULAR-DYNAMICS;
HYDROGENATED GRAPHENE;
EPITAXIAL GRAPHENE;
LAYER;
D O I:
10.1007/s12274-020-2744-6
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Moire patterns from two-dimensional (2D) graphene heterostructures assembled via van der Waals interactions have sparked considerable interests in physics with the purpose to tailor the electronic properties of graphene. Here we report for the first time the observation of moire patterns arising from a bilayer graphone/graphene superlattice produced through direct single-sided hydrogenation of a bilayer graphene on substrate. Compared to pristine graphene, the bilayer superlattice exhibits a rippled surface and two types of moire patterns are observed: triangular and linear moire patterns with the periodicities of 11 nm and 8-9 nm, respectively. These moire patterns are revealed from atomic force microscopy and further confirmed by following fast Fourier transform (FFT) analysis. Density functional theory (DFT) calculations are also performed and the optimized lattice constants of bilayer superlattice heterostructure are in line with our experimental analysis. These findings show that well-defined triangular and linear periodic potentials can be introduced into the graphene system through the single-sided hydrogenation and also open a route towards the tailoring of electronic properties of graphene by various moire potentials.
引用
收藏
页码:1060 / 1064
页数:5
相关论文