Impaired autophagy: The collateral damage of lysosomal storage disorders

被引:44
|
作者
Myerowitz, Rachel [1 ]
Puertollano, Rosa [2 ]
Raben, Nina [2 ]
机构
[1] St Marys Coll Maryland, Dept Biol, St Marys City, MD 20686 USA
[2] NHLBI, Cell & Dev Biol Ctr, NIH, 50 South Dr Room 3533, Bethesda, MD 20892 USA
来源
EBIOMEDICINE | 2021年 / 63卷
基金
美国国家卫生研究院;
关键词
Lysosome; Autophagy; Gaucher disease; Batten disease; Danon disease; Pompe disease; Cystinosis; ENZYME REPLACEMENT THERAPY; MOUSE MODEL; DISEASE; DEGRADATION; PROTEIN; BIOGENESIS; CYSTINOSIS; MUTATIONS; LAMP-2; TFEB;
D O I
10.1016/j.ebiom.2020.103166
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Lysosomal storage disorders (LSDs), which number over fifty, are monogenically inherited and caused by mutations in genes encoding proteins that are involved in lysosomal function. Lack of the functional protein results in storage of a distinctive material within the lysosomes, which for years was thought to determine the pathophysiology of the disorder. However, our current view posits that the primary storage material disrupts the normal role of the lysosome in the autophagic pathway resulting in the secondary storage of autophagic debris. It is this "collateral damage" which is common to the LSDs but nonetheless intricately nuanced in each. We have selected five LSDs resulting from defective proteins that govern widely different lysosomal functions including glycogen degradation (Pompe), lysosomal transport (Cystinosis), lysosomal trafficking (Danon), glycolipid degradation (Gaucher) and an unidentified function (Batten) and argue that despite the disparate functions, these proteins, when mutant, all impair the autophagic process uniquely. (C) 2020 The Authors. Published by Elsevier B.V.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Lipid-induced lysosomal damage after demyelination corrupts microglia protective function in lysosomal storage disorders
    Gabande-Rodriguez, Enrique
    Perez-Canamas, Azucena
    Soto-Huelin, Beatriz
    Mitroi, Daniel N.
    Sanchez-Redondo, Sara
    Martinez-Saez, Elena
    Venero, Cesar
    Peinado, Hector
    Dolores Ledesma, Maria
    EMBO JOURNAL, 2019, 38 (02):
  • [42] Lysosomal storage disorders: The cellular impact of lysosomal dysfunction
    Platt, Frances M.
    Boland, Barry
    van der Spoel, Aarnoud C.
    JOURNAL OF CELL BIOLOGY, 2012, 199 (05): : 723 - 734
  • [43] Lysosomal storage, impaired autophagy and innate immunity in Gaucher and Parkinson's diseases: insights for drug discovery
    Hull, Alexander
    Atilano, Magda L.
    Gergi, Laith
    Kinghorn, Kerri J.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2024, 379 (1899)
  • [44] Autophagy and lysosomal pathways in nervous system disorders
    Bingol, Baris
    MOLECULAR AND CELLULAR NEUROSCIENCE, 2018, 91 : 167 - 208
  • [45] mTORC1 hyperactivation arrests bone growth in lysosomal storage disorders by suppressing autophagy
    Bartolomeo, Rosa
    Cinque, Laura
    De Leonibus, Chiara
    Forrester, Alison
    Salzano, Anna Chiara
    Monfregola, Jlenia
    De Gennaro, Emanuela
    Nusco, Edoardo
    Azario, Isabella
    Lanzara, Carmela
    Serafini, Marta
    Levine, Beth
    Ballabio, Andrea
    Settembre, Carmine
    JOURNAL OF CLINICAL INVESTIGATION, 2017, 127 (10): : 3717 - 3729
  • [46] New treatments for lysosomal storage disorders
    Wilmott, RW
    JOURNAL OF PEDIATRICS, 2004, 144 (05): : 2A - 2A
  • [47] Gene therapy for the lysosomal storage disorders
    Cabrera-Salazar, MA
    Novelli, E
    Barranger, JA
    CURRENT OPINION IN MOLECULAR THERAPEUTICS, 2002, 4 (04) : 349 - 358
  • [48] Lysosomal storage disorders: Present and future
    Phadke, Shubha R.
    INDIAN PEDIATRICS, 2015, 52 (12) : 1025 - 1026
  • [49] Symposium on lysosomal storage disorders - Introduction
    Grabowski, GA
    JOURNAL OF PEDIATRICS, 2004, 144 (05): : S1 - S1
  • [50] Gene therapy for lysosomal storage disorders
    Cartier, Nathalie
    HUMAN GENE THERAPY, 2010, 21 (10) : 1360 - 1360