Maximal operators and BMO for Banach lattices

被引:7
|
作者
Garcia-Cuerva, J [1 ]
Macias, RA
Torrea, JL
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
[2] INTEC, RA-3000 Santa Fe, Argentina
关键词
D O I
10.1017/S001309150001991X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the behaviour of the classical (non-smooth) Hardy-Littlewood maximal operator in the context of Banach lattices. We are mainly concerned with end-point results for p = infinity. Naturally, the main role is played by the space BMO. We analyze the range of the maximal operator in BMOX. This turns out to depend strongly on the convexity of the Banach lattice X. We apply these results to study the behaviour of the commutators associated to the maximal operator. We also consider the parallel results for the maximal fractional integral operator.
引用
收藏
页码:585 / 609
页数:25
相关论文
共 50 条
  • [41] Some characterizations of compact operators on Banach lattices
    Aqzzouz B.
    Elbour A.
    Rendiconti del Circolo Matematico di Palermo, 2008, 57 (3) : 423 - 431
  • [42] The numerical range of positive operators on Banach lattices
    Agnes Radl
    Positivity, 2015, 19 : 603 - 623
  • [43] The numerical range of positive operators on Banach lattices
    Radl, Agnes
    POSITIVITY, 2015, 19 (03) : 603 - 623
  • [44] Separation properties for Carleman operators on Banach Lattices
    William Feldman
    Positivity, 2003, 7 : 41 - 45
  • [45] On p-convergent Operators on Banach Lattices
    Elroy D. Zeekoei
    Jan H. Fourie
    Acta Mathematica Sinica, English Series, 2018, 34 : 873 - 890
  • [46] Compact groups of positive operators on Banach lattices
    de Jeu, Marcel
    Wortel, Marten
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2014, 25 (02): : 186 - 205
  • [47] REFLEXIVITY FOR SPACES OF REGULAR OPERATORS ON BANACH LATTICES
    Li, Yongjin
    Bu, Qingying
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (11) : 4811 - 4818
  • [48] Weak limited sets and operators on Banach lattices
    Afkir, Farid
    Elbour, Aziz
    QUAESTIONES MATHEMATICAE, 2023, 46 (01) : 49 - 55
  • [49] Summability of multilinear operators and their linearizations on Banach lattices
    Belacel, Amar
    Bougoutaia, Amar
    Rueda, Pilar
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 527 (02)
  • [50] On p-convergent Operators on Banach Lattices
    Elroy D.ZEEKOEI
    Jan H.FOURIE
    Acta Mathematica Sinica,English Series, 2018, (05) : 873 - 890