We investigate the behaviour of the classical (non-smooth) Hardy-Littlewood maximal operator in the context of Banach lattices. We are mainly concerned with end-point results for p = infinity. Naturally, the main role is played by the space BMO. We analyze the range of the maximal operator in BMOX. This turns out to depend strongly on the convexity of the Banach lattice X. We apply these results to study the behaviour of the commutators associated to the maximal operator. We also consider the parallel results for the maximal fractional integral operator.
机构:
Faculté des Sciences Economiques, Juridiques et Sociales, Département d'Economie, Université Mohammed V-Souissi, SalaEljadidaFaculté des Sciences Economiques, Juridiques et Sociales, Département d'Economie, Université Mohammed V-Souissi, SalaEljadida
Aqzzouz B.
Elbour A.
论文数: 0引用数: 0
h-index: 0
机构:
Faculté des Sciences, Département de Mathématiques, Université Ibn Tofail, KénitraFaculté des Sciences Economiques, Juridiques et Sociales, Département d'Economie, Université Mohammed V-Souissi, SalaEljadida
机构:
Unit for Business Mathematics and Informatics, North-West University (NWU)Unit for Business Mathematics and Informatics, North-West University (NWU)
Elroy D.ZEEKOEI
Jan H.FOURIE
论文数: 0引用数: 0
h-index: 0
机构:
Unit for Business Mathematics and Informatics, North-West University (NWU)Unit for Business Mathematics and Informatics, North-West University (NWU)