Slope filtration of quasi-unipotent overconvergent F-isocrystals

被引:25
|
作者
Tsuzuki, N [1 ]
机构
[1] Hiroshima Univ, Fac Sci, Dept Math, Higashihiroshima 739, Japan
关键词
quasi-unipotent F-isocrystals; phi-del-modules; slope filtration;
D O I
10.5802/aif.1622
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study local properties of quasi-unipotent overconvergent F-isocrystals on a curve over a perfect field of positive characteristic p. For a phi-delta-module over the Robba ring R, we define the slope filtration for Frobenius structures. We prove that an overconvergent F-isocrystal is quasi-unipotent if and only if it has the slope filtration for Frobenius structures locally at every point on the complement of the curve.
引用
收藏
页码:379 / +
页数:35
相关论文
共 50 条
  • [31] Bessel F-isocrystals for reductive groups
    Daxin Xu
    Xinwen Zhu
    Inventiones mathematicae, 2022, 227 : 997 - 1092
  • [32] F-ISOCRYSTALS AND DERHAM COHOMOLOGY .2. CONVERGENT ISOCRYSTALS
    OGUS, A
    DUKE MATHEMATICAL JOURNAL, 1984, 51 (04) : 765 - 850
  • [33] NEW RESULTS ON QUASI-UNIPOTENT BUNDLES
    MATHIEU, P
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1985, 37 (01): : 75 - 81
  • [34] Slopes of F-isocrystals over abelian varieties
    D'Addezio, Marco
    DOCUMENTA MATHEMATICA, 2023, 28 : 1 - 9
  • [35] F-ISOCRYSTALS AND P-ADIC REPRESENTATIONS
    CREW, R
    PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1987, 46 : 111 - 138
  • [36] Drinfeld's Lemma for F-isocrystals, I
    Kedlaya, Kiran S.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (11) : 9340 - 9358
  • [37] QUASI-UNIPOTENT MOTIVES AND MOTIVIC NEARBY SHEAVES
    Ivorra, Florian
    Sebag, Julien
    ASIAN JOURNAL OF MATHEMATICS, 2021, 25 (01) : 89 - 116
  • [38] On the classification and specialization of F-isocrystals with additional structure
    Rapoport, M
    Richartz, M
    COMPOSITIO MATHEMATICA, 1996, 103 (02) : 153 - 181
  • [39] Local systems with quasi-unipotent monodromy at infinity are dense
    Hélène Esnault
    Moritz Kerz
    Israel Journal of Mathematics, 2023, 257 : 251 - 262
  • [40] Zeroes and poles of the L-functions of F-isocrystals
    Trihan, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (05): : 431 - 436