STRONGLY JORDAN PROPERTY AND FREE ACTIONS OF NON-ABELIAN FREE GROUPS

被引:1
|
作者
Kim, Jin Hong [1 ]
机构
[1] Chosun Univ, Dept Math Educ, 309 Pilmun Daero, Gwangju 61452, South Korea
基金
新加坡国家研究基金会;
关键词
Jordan property; strongly Jordan; Jordan constants; automorphism groups; birational automorphism groups; Fujiki's class; finite bounded subgroups; free actions; non-abelian free groups; complex torus; AUTOMORPHISM-GROUPS;
D O I
10.1017/S0013091522000311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X be a connected complex manifold and let. Z be a compact. complex subspace of X. Assume that Aut(Z) is strongly Jordan. In this paper, we show that the automorphism group Aut(X, Z) of all biholomorphisms of X preserving Z is strongly Jordan. A similar result has been proved by Meng et al. for a compact Ktiller submanifold Z of X instead of a compact complex subspace Z of X. In addition, we also show some rigidity result for free actions of large groups on complex manifolds.
引用
收藏
页码:736 / 746
页数:11
相关论文
共 50 条
  • [21] Free actions of free groups on countable structures and property (T)
    Evans, David M.
    Tsankov, Todor
    FUNDAMENTA MATHEMATICAE, 2016, 232 (01) : 49 - 63
  • [22] THE NON-ABELIAN TENSOR PRODUCT OF FINITE GROUPS IS FINITE: A HOMOLOGY-FREE PROOF
    Thomas, Viji Z.
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 473 - 477
  • [23] Algebraic actions of the discrete Heisenberg group and other non-abelian groups
    Einsiedler M.
    Rindler H.
    aequationes mathematicae, 2001, 62 (1) : 117 - 135
  • [24] Free energy on the sphere for non-abelian gauge theories
    De Cesare, Fabiana
    Di Pietro, Lorenzo
    Serone, Marco
    JOURNAL OF HIGH ENERGY PHYSICS, 2023, 2023 (04)
  • [25] Free energy on the sphere for non-abelian gauge theories
    Fabiana De Cesare
    Lorenzo Di Pietro
    Marco Serone
    Journal of High Energy Physics, 2023
  • [26] GHOST-FREE NON-ABELIAN GAUGE THEORY
    KUMMER, W
    ACTA PHYSICA AUSTRIACA, 1975, 41 (3-4): : 315 - 334
  • [27] Non-Abelian Pseudocompact Groups
    Comfort, W. W.
    Remus, Dieter
    AXIOMS, 2016, 5 (01)
  • [28] Non-abelian nil groups
    Feigelstock, S
    ACTA MATHEMATICA HUNGARICA, 2000, 87 (03) : 229 - 234
  • [29] On non-abelian Schur groups
    Ponomarenko, Ilya
    Vasil'ev, Andrey
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2014, 13 (08)
  • [30] Non-Abelian Nil Groups
    S. Feigelstock
    Acta Mathematica Hungarica, 2000, 87 : 229 - 234