Asymptotically unbiased estimators for the extreme-value index

被引:75
|
作者
Peng, L [1 ]
机构
[1] Erasmus Univ, Tinbergen Inst Rotterdam, NL-3062 PA Rotterdam, Netherlands
关键词
extreme-value index; Hill estimator; Pickands' estimator;
D O I
10.1016/S0167-7152(97)00160-0
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Estimators of the extreme-value index are based on a set of upper order statistics. When the number of upper-order statistics used in the estimation of the extreme-value index is small, the variance of the estimator will be large. On the other hand, the use of a large number of upper statistics will introduce a big bias. There are several papers concerning how to balance the variance component and the bias component. In this paper, we give an unbiased estimator even if one uses a large number of upper-order statistics. (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:107 / 115
页数:9
相关论文
共 50 条
  • [31] Multivariate moment based extreme value index estimators
    Matias Heikkilä
    Yves Dominicy
    Pauliina Ilmonen
    Computational Statistics, 2017, 32 : 1481 - 1513
  • [32] Multivariate moment based extreme value index estimators
    Heikkila, Matias
    Dominicy, Yves
    Ilmonen, Pauliina
    COMPUTATIONAL STATISTICS, 2017, 32 (04) : 1481 - 1513
  • [33] Kernel-type estimators for the extreme value index
    Groeneboom, P
    Lopuhaä, HP
    De Wolf, PP
    ANNALS OF STATISTICS, 2003, 31 (06): : 1956 - 1995
  • [34] On the comparison of several classical estimators of the extreme value index
    Cabral, Ivanilda
    Caeiro, Frederico
    Gomes, M. Ivette
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2022, 51 (01) : 179 - 196
  • [35] Asymptotic distribution of a Pickands-type estimator of the extreme-value index
    Gardes, L
    Girard, S
    COMPTES RENDUS MATHEMATIQUE, 2005, 341 (01) : 53 - 58
  • [36] Nonparametric estimation of the conditional extreme-value index with random covariates and censoring
    Ndao, Pathe
    Diop, Aliou
    Dupuy, Jean-Francois
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2016, 168 : 20 - 37
  • [37] MOMENT PROPERTIES OF ESTIMATORS FOR A TYPE-1 EXTREME-VALUE REGRESSION-MODEL
    HADDOW, AA
    YOUNG, DH
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1986, 15 (08) : 2527 - 2539
  • [38] GENERALIZED EXTREME-VALUE DENSITY
    MIHRAM, GA
    SOUTH AFRICAN STATISTICAL JOURNAL, 1975, 9 (02) : 153 - 161
  • [39] Asymptotic expansion for distribution function of moment estimator for the extreme-value index
    潘家柱
    程士宏
    Science China Mathematics, 2000, (11) : 1131 - 1143
  • [40] Asymptotic expansion for distribution function of moment estimator for the extreme-value index
    Pan, Jiazhu
    Cheng, Shihong
    Science in China, Series A: Mathematics, Physics, Astronomy, 2000, 43 (11): : 1131 - 1143