Analysis of a Time-Stepping Discontinuous Galerkin Method for Fractional Diffusion-Wave Equations with Nonsmooth Data

被引:10
|
作者
Li, Binjie [1 ]
Wang, Tao [2 ]
Xie, Xiaoping [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Peoples R China
[2] South China Normal Univ, South China Res Ctr Appl Math & Interdisciplinary, Guangzhou 510631, Peoples R China
基金
中国国家自然科学基金;
关键词
Fractional diffusion-wave problem; Discontinuous Galerkin method; Discrete Laplace transform; Convergence; Nonsmooth data; EVOLUTION EQUATION; NUMERICAL-SOLUTION; DISCRETIZATION; QUADRATURE;
D O I
10.1007/s10915-019-01118-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper analyzes a time-stepping discontinuous Galerkin method for fractional diffusion-wave problems. This method uses piecewise constant functions in the temporal discretization and continuous piecewise linear functions in the spatial discretization. Nearly optimal convergence with respect to the regularity of the solution is established when the source term is nonsmooth, and nearly optimal convergence rate ln(1/tau)(root ln(1/h)h2+tau) is derived under appropriate regularity assumption on the source term. Convergence is also established without smoothness assumption on the initial value. Finally, numerical experiments are performed to verify the theoretical results.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients
    Mustapha, K.
    Abdallah, B.
    Furati, K. M.
    Nour, M.
    NUMERICAL ALGORITHMS, 2016, 73 (02) : 517 - 534
  • [22] A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    Zeng, Zhankuan
    Chen, Yanping
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (02) : 839 - 854
  • [23] A discontinuous Galerkin method for time fractional diffusion equations with variable coefficients
    K. Mustapha
    B. Abdallah
    K. M. Furati
    M. Nour
    Numerical Algorithms, 2016, 73 : 517 - 534
  • [24] A Local Discontinuous Galerkin Method for Time-Fractional Diffusion Equations
    Zhankuan Zeng
    Yanping Chen
    Acta Mathematica Scientia, 2023, 43 : 839 - 854
  • [25] A LOCAL DISCONTINUOUS GALERKIN METHOD FOR TIME-FRACTIONAL DIFFUSION EQUATIONS
    曾展宽
    陈艳萍
    Acta Mathematica Scientia, 2023, 43 (02) : 839 - 854
  • [26] Analysis of local discontinuous Galerkin method for time–space fractional convection–diffusion equations
    M. Ahmadinia
    Z. Safari
    S. Fouladi
    BIT Numerical Mathematics, 2018, 58 : 533 - 554
  • [27] An ADER discontinuous Galerkin method with local time-stepping for transient electromagnetics
    Qi, Hongxin
    Wang, Xianghui
    Zhang, Jie
    Wang, Jianguo
    COMPUTER PHYSICS COMMUNICATIONS, 2018, 229 : 106 - 115
  • [28] Local Time-Stepping for Explicit Discontinuous Galerkin Schemes
    Gassner, Gregor
    Dumbser, Michael
    Hindenlang, Florian
    Munz, Claus-Dieter
    COMPUTATIONAL FLUID DYNAMICS 2010, 2011, : 171 - 177
  • [29] Error estimation of a discontinuous Galerkin method for time fractional subdiffusion problems with nonsmooth data
    Binjie Li
    Hao Luo
    Xiaoping Xie
    Fractional Calculus and Applied Analysis, 2022, 25 : 747 - 782
  • [30] Error estimation of a discontinuous Galerkin method for time fractional subdiffusion problems with nonsmooth data
    Li, Binjie
    Luo, Hao
    Xie, Xiaoping
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (02) : 747 - 782