A new generalized algebraic method and its application in nonlinear evolution equations with variable coefficients

被引:36
|
作者
Bai, CL [1 ]
Bai, CJ
Zhao, H
机构
[1] Liaocheng Univ, Phys Sci & Informat Engn Sch, Liaocheng 252059, Peoples R China
[2] Shandong Normal Univ, Commun Sch, Jinan 250014, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2005年 / 60卷 / 04期
基金
中国国家自然科学基金;
关键词
new generalized Algebraic method; variable coefficients nonlinear evolution equations; exact explicit solutions;
D O I
10.1515/zna-2005-0401
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this paper, a new generalized algebraic method is proposed to construct a series of explicit exact solutions of general nonlinear evolution equations with variable coefficients. Compared with most existing methods, such as the tanh method, the extended tanh method, the Jacobi elliptic function method or the algebraic method, the proposed method seems to be more powerful. The efficiency of the method is demonstrated by applying it to the (1+1)-dimensional variable coefficients modified Korteweg-de Vries (MKdV) equation and the (2+1)-dimensional variable coefficients Kadomtsev-Petviashvili (KP) equation. A rich variety of new exact explicit solutions has been found.
引用
收藏
页码:211 / 220
页数:10
相关论文
共 50 条
  • [31] New extended direct algebraic method for the Tzitzeica type evolution equations arising in nonlinear optics
    Mirhosseini-Alizamini, Seyed Mehdi
    Rezazadeh, Hadi
    Eslami, Mostafa
    Mirzazadeh, Mohammad
    Korkmaz, Alper
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (01): : 28 - 53
  • [32] New variable separation solutions for the generalized nonlinear diffusion equations
    吉飞宇
    张顺利
    Chinese Physics B, 2016, 25 (03) : 49 - 55
  • [33] New variable separation solutions for the generalized nonlinear diffusion equations
    Ji, Fei-Yu
    Zhang, Shun-Li
    CHINESE PHYSICS B, 2016, 25 (03)
  • [34] Generalized algebraic Riccati equations and its application to balanced stochastic truncations
    Kunimatsu, S
    Fujii, T
    PROCEEDINGS OF THE 2002 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2002, 1-6 : 1186 - 1191
  • [35] FROBENIUS INTEGRABLE DECOMPOSITIONS FOR TWO CLASSES OF NONLINEAR EVOLUTION EQUATIONS WITH VARIABLE COEFFICIENTS
    You, Fucai
    Xia, Tiecheng
    Zhang, Jiao
    MODERN PHYSICS LETTERS B, 2009, 23 (12): : 1519 - 1524
  • [36] A Direct Transformation Method and its Application to Variable Coefficient Nonlinear Equations of Schrodinger Type
    Zhang, Li-Hua
    Liu, Xi-Qiang
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2009, 64 (11): : 697 - 708
  • [37] An automated algebraic method for finding exact solutions to nonlinear evolution equations
    Li, ZB
    Liu, YP
    Yao, RX
    MATHEMATICAL SOFTWARE, PROCEEDINGS, 2002, : 464 - 474
  • [38] A new general algebraic method and its application to shallow long wave approximate equations
    Zhao Xue-Qin
    Zhi Hong-Yan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2007, 48 (05) : 781 - 786
  • [40] Generalized Jacobi-Galerkin method for nonlinear fractional differential algebraic equations
    Ghanbari, F.
    Ghanbari, K.
    Mokhtary, P.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (04): : 5456 - 5475