Cardiac Contractility Modulation Attenuate Myocardial Fibrosis by Inhibiting TGF-β1/Smad3 Signaling Pathway in a Rabbit Model of Chronic Heart Failure

被引:57
|
作者
Zhang, Feifei [1 ]
Dang, Yi [2 ]
Li, Yingxiao [2 ]
Hao, Qingqing [2 ]
Li, Rong [1 ]
Qi, Xiaoyong [1 ,2 ]
机构
[1] Hebei Med Univ, Grad Sch, Shijiazhuang 050051, Hebei Province, Peoples R China
[2] Hebei Gen Hosp, Dept Cardiol Ctr, Shijiazhuang 050051, Peoples R China
关键词
Cardiac contractility modulation; Heart failure; Myocardial fibrosis; TGF-beta; 1; Smad3; ELECTRICAL SIGNALS; THERAPY; HYPERTROPHY; EXPRESSION; PROTEINS; EFFICACY; MIR-133; DOGS;
D O I
10.1159/000445624
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Backgroun/Aims: To explore the effect of cardiac contractility modulation (CCM) on myocardial fibrosis in heart failure and to investigate the underlying mechanism. Methods: Rabbits were randomly divided into sham group, HF group and CCM group. A rabbit model of chronic heart failure (CHF) was induced 12 weeks after aortic constriction by pressure unloading. Then cardiac contractility modulation was delivered to the myocardium lasting six hours per day for 4 weeks. Histology examination was carried out to evaluate the myocardial pathological changes. Protein levels of collagen I, collagen III, alpha-SMA, MMP2, MMP9, TIMP1, TGF-beta 1 and Smad3 were measured by western blot analysis. Results: Histology examination results showed that CCM therapy attenuated myocardial fibrosis and collagen deposition in rabbits with CHF. In addition, protein levels of collagen I, collagen III, alpha-SMA, MMP2, MMP9, TIMP1, TGF-beta 1 and Smad3 were down regulated. Conclusion: CCM therapy exerted protective effects against myocardial fibrosis potentially by inhibiting TGF-beta 1/Smad3 signaling pathway in CHF rabbits. (C) 2016 The Author(s) Published by S. Karger AG, Basel
引用
收藏
页码:294 / 302
页数:9
相关论文
共 50 条
  • [21] TGF-β/Smad3 Signaling Promotes Renal Fibrosis by Inhibiting miR-29
    Qin, Wei
    Chung, Arthur C. K.
    Huang, Xiao R.
    Meng, Xiao-Ming
    Hui, David S. C.
    Yu, Cheuk-Man
    Sung, Joseph J. Y.
    Lan, Hui Y.
    JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2011, 22 (08): : 1462 - 1474
  • [22] Hydrogen sulfide ameliorates rat myocardial fibrosis induced by hyperhomocysteinemia through TGF-β1/SMAD3 signaling pathway
    Yi, Jiali
    Liu, Shengquan
    Zheng, Xia
    Li, Yaling
    Nie, Liangui
    Wu, Qian
    Chen, Jian
    Zhang, Jingjing
    Chu, Chun
    Yang, Jun
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2019, 125 : 9 - 10
  • [23] Leech extract alleviates idiopathic pulmonary fibrosis by TGF-β1/Smad3 signaling pathway
    Zhang, Yin
    Lu, Yong-Bo
    Zhu, Wei-Jie
    Gong, Xiao-Xi
    Qian, Rui
    Lu, Yi-Jing
    Li, Yu
    Yao, Wei-Feng
    Bao, Bei-Hua
    Zhang, Yi
    Zhang, Li
    Cheng, Fang -Fang
    JOURNAL OF ETHNOPHARMACOLOGY, 2024, 324
  • [24] TRPV4 Mediates Cardiac Fibrosis via the TGF-β1/Smad3 Signaling Pathway in Diabetic Rats
    Jia, Xiaoli
    Xiao, Chao
    Sheng, Deqiao
    Yang, Mengcheng
    Cheng, Quanyi
    Wu, Jing
    Zhang, Shizhong
    CARDIOVASCULAR TOXICOLOGY, 2020, 20 (05) : 492 - 499
  • [25] TRPV4 Mediates Cardiac Fibrosis via the TGF-β1/Smad3 Signaling Pathway in Diabetic Rats
    Xiaoli Jia
    Chao Xiao
    Deqiao Sheng
    Mengcheng Yang
    Quanyi Cheng
    Jing Wu
    Shizhong Zhang
    Cardiovascular Toxicology, 2020, 20 : 492 - 499
  • [26] Matrine inhibits cardiac fibrosis by inhibiting TGFβ1/smad signaling pathway
    Liu Zhongwei
    Yang, Yu
    Xu, Jing
    Jiang, Xin
    Wang, Junkui
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2016, 68 (16) : C40 - C40
  • [27] Follistatin Attenuates Myocardial Fibrosis in Diabetic Cardiomyopathy via the TGF-β-Smad3 Pathway
    Wang, Yinhui
    Yu, Kun
    Zhao, Chengcheng
    Zhou, Ling
    Cheng, Jia
    Wang, Dao Wen
    Zhao, Chunxia
    FRONTIERS IN PHARMACOLOGY, 2021, 12
  • [28] Astragaloside Inhibits Hepatic Fibrosis by Modulation of TGF-β1/Smad Signaling Pathway
    Yuan, Xingxing
    Gong, Zhiqiang
    Wang, Bingyu
    Guo, Xueying
    Yang, Lei
    Li, Dandan
    Zhang, Yali
    EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2018, 2018
  • [30] Ponatinib ameliorates pulmonary fibrosis by suppressing TGF-β1/Smad3 pathway
    Qu, Yubei
    Zhang, Liang
    Kang, Zechun
    Jiang, Wanglin
    Lv, Changjun
    PULMONARY PHARMACOLOGY & THERAPEUTICS, 2015, 34 : 1 - 7